Improving the rate of convergence of high-order finite elements on polyhedra I:: A priori estimates

被引:47
作者
Bacuta, C [1 ]
Nistor, V
Zikatanov, LT
机构
[1] Univ Delaware, Newark, DE 19716 USA
[2] Penn State Univ, Math Dept, University Pk, PA USA
基金
美国国家科学基金会;
关键词
finite element approximation; polyhedral domain; regularity; strongly elliptic operator; weighted Sobolev space;
D O I
10.1080/01630560500377295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-k be a sequence of triangulations of a polyhedron Omega subset of R-n and let S-k be the associated finite element space of continuous, piecewise polynomials of degree m. Let u(k) epsilon S-k be the finite element approximation of the solution u of a second- order, strongly elliptic system Pu = f with zero Dirichlet boundary conditions. We show that a weak approximation property of the sequence Sk ensures optimal rates of convergence for the sequence u(k). The method relies on certain a priori estimates in weighted Sobolev spaces for the system Pu = 0 that we establish. The weight is the distance to the set of singular boundary points. We obtain similar results for the Poisson problem with mixed Dirichlet - Neumann boundary conditions on a polygon.
引用
收藏
页码:613 / 639
页数:27
相关论文
共 40 条
[1]  
AMMANN B, 2004, INT J MATH MATH SCI, P161
[2]  
AMMANN B, 2004, MATHAP0402321 MSRI
[3]  
[Anonymous], 1991, HDB NUMER ANAL
[4]  
[Anonymous], 1988, ELLIPTIC BOUNDARY VA
[5]  
ARNOLD D, 1989, ANN SCUOLA NORM SUP, V15, P169
[6]  
ARNOLD DN, 1987, ARCH RATION MECH AN, V98, P143, DOI 10.1007/BF00251231
[7]   FINITE ELEMENT METHOD FOR DOMAINS WITH CORNERS [J].
BABUSKA, I .
COMPUTING, 1970, 6 (3-4) :264-&
[8]   NUMERICAL TREATMENT OF VERTEX SINGULARITIES AND INTENSITY FACTORS FOR MIXED BOUNDARY-VALUE-PROBLEMS FOR THE LAPLACE EQUATION IN R(3) [J].
BABUSKA, I ;
VONPETERSDORFF, T ;
ANDERSSON, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (05) :1265-1288
[9]  
Babuska I., 1972, The Mathematical Foundations of the Finite Element Method with Applicaions to Partial Differential Equations, P3
[10]   Improving the rate of convergence of 'high order finite elements' on polygons and domains with cusps [J].
Bacuta, C ;
Nistor, V ;
Zikatanov, LT .
NUMERISCHE MATHEMATIK, 2005, 100 (02) :165-184