Server-class DDR3 SDRAM memory buffer chip

被引:4
作者
Van Huben, G. A. [1 ]
Lamb, K. D. [1 ]
Tremaine, R. B. [1 ]
Aleman, B. E. [1 ]
Rubow, S. M. [1 ]
Rider, S. H. [1 ]
Maule, W. E. [2 ]
Wazlowski, M. E. [1 ]
机构
[1] IBM Syst & Technol Grp, Poughkeepsie, NY 12601 USA
[2] IBM Corp, Syst & Technol Grp, Austin, TX 78758 USA
关键词
Redundancy - Memory architecture;
D O I
10.1147/JRD.2011.2177897
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
IBM System i (R), System p (R), and System z (R) servers require an efficient ultrareliable high-performance memory subsystem. The fourth-generation IBM advanced memory buffer (AMB) chip provides industry-leading performance, scalability, and reliability for the double-data-rate 3 (DDR3) synchronous dynamic random access memory (SDRAM) subsystems employed across a wide range of server platforms. The new IBM AMB employs a cyclic redundancy code-protected packet-protocol-based 6.4-Gb/s host channel, as well as dual 9-byte/10-byte wide 800 to 1,333-Mb/s SDRAM interfaces with dynamic calibration for optimal signal integrity under varied device and system environmental conditions. Applications support industry-standard dual inline memory module (DIMM) and low-latency high-capacity proprietary DIMM packages in conventional multichannel and redundant array of independent memory system architectures. A fully configured daisy-chain topology contains up to 256 GB of memory per host channel. This paper describes the IBM AMB chip architecture, design, and key engineering aspects.
引用
收藏
页数:11
相关论文
共 10 条
[1]  
[Anonymous], 2009, INCR COMP PLATF EFF
[2]  
[Anonymous], 2010, JESD793E JEDEC
[3]  
Cisco Inc, 2009, CISC UN COMP SYST EX
[4]  
Ganesh B, 2007, INT S HIGH PERF COMP, P109
[5]  
Haas J., 2005, TECHNOLOGY, P1
[6]  
Intel Inc, 2006, INT 6400 6402 ADV ME
[7]   IBM zEnterprise redundant array of independent memory subsystem [J].
Meaney, P. J. ;
Lastras-Montano, L. A. ;
Papazova, V. K. ;
Stephens, E. ;
Johnson, J. S. ;
Alves, L. C. ;
O'Connor, J. A. ;
Clarke, W. J. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2012, 56 (1-2) :1-2
[8]  
Nasr R. M., 2005, THESIS U MARYLAND CO
[9]   A 4.5 mW/Gb/s 6.4 Gb/s 22+1-Lane Source Synchronous Receiver Core With Optional Cleanup PLL in 65 nm CMOS [J].
Reutemann, Robert ;
Ruegg, Michael ;
Keyser, Fran ;
Bergkvist, John ;
Dreps, Daniel ;
Toifl, Thomas ;
Schmatz, Martin .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (12) :2850-2860
[10]  
Schroeder B, 2009, PERF E R SI, V37, P193