Adaptive control for nonlinearly parameterized uncertainties in robot manipulators

被引:43
作者
Hung, N. V. Q. [1 ]
Tuan, H. D. [2 ]
Narikiyo, T. [3 ]
Apkarian, P. [4 ]
机构
[1] Toyota Motor Co Ltd, Tech Res Ctr, Shizuoka 4101193, Japan
[2] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[3] Toyota Technol Inst, Dept Elect & Comp Engn, Nagoya, Aichi 4688511, Japan
[4] ONERA CERT, F-31055 Toulouse, France
关键词
adaptive control; friction compensation; motion control; nonlinearities; parameter estimation; robot control; uncertain systems;
D O I
10.1109/TCST.2007.903088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this brief, a new adaptive control framework to compensate for uncertain nonlinear parameters in robot manipulators is developed. The designed adaptive controllers possess a linear parameter structure, guarantee global boundedness of the closed-loop system as well as tracking of a given trajectory within any prescribed accuracy. Our design approach takes advantage of a Lipschitzian property with respect to the plant nonlinear parameters. The outcome is that a very broad class of nonlinearly parameterized adaptive control,problems for robot manipulators can be solved using this technique. Another feature of the pro- posed method is the design of low-dimensional estimator, even 1-D if desired, independently of the unknown parameter vector dimension. Simulations and experiments in friction compensation task for low-velocity tracking of a 2 degree-of-freedom planar robot demonstrate the viability of the technique and emphasize its advantages relatively to more classical approaches.
引用
收藏
页码:458 / 468
页数:11
相关论文
共 13 条
[1]   A SURVEY OF MODELS, ANALYSIS TOOLS AND COMPENSATION METHODS FOR THE CONTROL OF MACHINES WITH FRICTION [J].
ARMSTRONGHELOUVRY, B ;
DUPONT, P ;
DEWIT, CC .
AUTOMATICA, 1994, 30 (07) :1083-1138
[2]  
Astrom K. J., 1995, ADAPTIVE CONTROL
[3]  
DEWIT CC, 1996, THEORY ROBOT CONTROL
[4]   Adaptive control techniques for friction compensation [J].
Feemster, M ;
Vedagarbha, P ;
Dawson, DM ;
Haste, D .
MECHATRONICS, 1999, 9 (02) :125-145
[5]   ON ADAPTIVE FRICTION COMPENSATION [J].
FRIEDLAND, B ;
PARK, YJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (10) :1609-1612
[6]  
Hung NVQ, 2002, IEEE DECIS CONTR P, P1727, DOI 10.1109/CDC.2002.1184771
[7]  
Liu G, 2001, IEEE INT CONF ROBOT, P1155, DOI 10.1109/ROBOT.2001.932767
[8]   Friction Models and Friction Compensation [J].
Olsson, H. ;
Astrom, K. J. ;
de Wit, C. Canudas ;
Gafvert, M. ;
Lischinsky, P. .
EUROPEAN JOURNAL OF CONTROL, 1998, 4 (03) :176-195
[9]   ADAPTIVE MOTION CONTROL OF RIGID ROBOTS - A TUTORIAL [J].
ORTEGA, R ;
SPONG, MW .
AUTOMATICA, 1989, 25 (06) :877-888
[10]  
Sastry S., 1990, Adaptive Control: Stability, Convergence and Robustness