The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators

被引:21
作者
Yang YiDu [1 ]
Chen Zhen [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 07期
基金
中国国家自然科学基金;
关键词
self-adjoint completely continuous operator; spectral approximation; the order-preserving convergence;
D O I
10.1007/s11425-008-0002-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T. Under the condition that the approximate operator T (h) converges to T in norm, it is proven that the k-th eigenvalue of T (h) converges to the k-th eigenvalue of T. (We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements, nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems, and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue.
引用
收藏
页码:1232 / 1242
页数:11
相关论文
共 18 条
[1]  
Armentano MG, 2004, ELECTRON T NUMER ANA, V17, P93
[2]  
Babuska I., 1991, EIGENVALUE PROBLEMS
[3]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[4]  
Cao LQ, 2002, SCI CHINA SER A, V45, P1588
[5]  
CHATELIN F., 1983, Spectral Approximation of Linear Operators
[6]  
Ciarlet P.G., 1991, BASIC ERROR ESTIMATE
[7]   A posteriori error estimators for mixed approximations of eigenvalue problems [J].
Durán, RG ;
Gastaldi, L ;
Padra, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (08) :1165-1178
[8]  
LASCAUX P, 1975, REV FR AUTOMAT INFOR, V9, P9
[9]  
Lin Q., 2006, Finite Element Methods: Accuracy and Improvement
[10]  
OSBORN JE, 1975, MATH COMPUT, V29, P712, DOI 10.1090/S0025-5718-1975-0383117-3