Limit-cycle phase in driven-dissipative spin systems

被引:71
作者
Chan, Ching-Kit [1 ,2 ]
Lee, Tony E. [1 ,2 ]
Gopalakrishnan, Sarang [2 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 05期
基金
美国国家科学基金会;
关键词
ION QUANTUM SIMULATOR;
D O I
10.1103/PhysRevA.91.051601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the phase diagram of interacting spin-1/2 systems in the presence of anisotropic interactions, spontaneous decay, and driving. We find a rich phase diagram featuring a limit-cycle phase in which the magnetization oscillates in time. We analyze the spatiotemporal fluctuations of this limit-cycle phase based on a Gaussian-Floquet analysis. Spatial fluctuations destroy long-range limit-cycle ordering for dimension d <= 2, as a time-dependent generalization of the Mermin-Wagner theorem. This result can be interpreted in terms of a spatiotemporal Goldstone mode corresponding to phase fluctuations of the limit cycle. We also demonstrate that the limit-cycle phase exhibits an asymmetric power spectrum measurable in fluorescence experiments.
引用
收藏
页数:5
相关论文
共 43 条
  • [1] Altland A, 2010, CONDENSED MATTER FIE
  • [2] Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy
    Altman, Ehud
    Sieberer, Lukas M.
    Chen, Leiming
    Diehl, Sebastian
    Toner, John
    [J]. PHYSICAL REVIEW X, 2015, 5 (01):
  • [3] [Anonymous], 2011, QUANTUM PHASE TRANSI
  • [4] [Anonymous], 1975, Linear Differential Equations with Periodic Coeffcients
  • [5] Spin squeezing of atoms by the dipole interaction in virtually excited Rydberg states
    Bouchoule, I
    Molmer, K
    [J]. PHYSICAL REVIEW A, 2002, 65 (04): : 418031 - 418034
  • [6] Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins
    Britton, Joseph W.
    Sawyer, Brian C.
    Keith, Adam C.
    Wang, C. -C. Joseph
    Freericks, James K.
    Uys, Hermann
    Biercuk, Michael J.
    Bollinger, John J.
    [J]. NATURE, 2012, 484 (7395) : 489 - 492
  • [7] Impossibility of Spontaneously Rotating Time Crystals: A No-Go Theorem
    Bruno, Patrick
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (07)
  • [8] Carmichael H.J., 1999, Statistical methods in quantum optics: Master equations and Fokker-Plank equations, DOI 10.1007/978-3-662-03875-8
  • [9] Quantum interference between independent reservoirs in open quantum systems
    Chan, Ching-Kit
    Lin, Guin-Dar
    Yelin, Susanne F.
    Lukin, Mikhail D.
    [J]. PHYSICAL REVIEW A, 2014, 89 (04):
  • [10] PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM
    CROSS, MC
    HOHENBERG, PC
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (03) : 851 - 1112