Large deviation estimates of the crossing probability for pinned Gaussian processes

被引:7
作者
Caramellino, Lucia [1 ]
Pacchiarotti, Barbara [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
conditioned Gaussian process; reproducing kernel Hilbert spaces; large deviations; exit time probability; Monte Carlo method;
D O I
10.1239/aap/1214950211
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper deals with the asymptotic behavior of the bridge of a Gaussian process conditioned to stay in it fixed points at n fixed past instants. In particular, functional large deviation results are stated for small time. Several examples are considered: integrated or not fractional Brownian motions and m-fold integrated Brownian motion. As an application, the asymptotic behavior of the exit probability is studied and used for the practical purpose of the numerical computation, via Monte Carlo methods, of the hitting probability up to a given time of the unpinned process.
引用
收藏
页码:424 / 453
页数:30
相关论文
共 14 条
  • [1] [Anonymous], 1980, LECT NOTES MATH
  • [2] Pricing general barrier options: A numerical approach using Sharp Large Deviations
    Baldi, P
    Caramellino, L
    Iovino, MG
    [J]. MATHEMATICAL FINANCE, 1999, 9 (04) : 293 - 321
  • [3] Baldi P, 2002, ANN APPL PROBAB, V12, P1071
  • [4] Explicit computation of second-order moments of importance sampling estimators for fractional Brownian motion
    Baldi, Paolo
    Pacchiarotti, Barbara
    [J]. BERNOULLI, 2006, 12 (04) : 663 - 688
  • [5] Chen X, 2003, ANN PROBAB, V31, P1052
  • [6] Mixed fractional Brownian motion
    Cheridito, P
    [J]. BERNOULLI, 2001, 7 (06) : 913 - 934
  • [7] Dembo A., 1992, LARGE DEVIATIONS TEC
  • [8] Deuschel J. D., 1989, LARGE DEVIATIONS
  • [9] A mathematical model for the atomic clock error
    Galleani, L
    Sacerdote, L
    Tavella, P
    Zucca, C
    [J]. METROLOGIA, 2003, 40 (03) : S257 - S264
  • [10] Gasbarra D, 2007, ABEL SYMP, V2, P361