Plea for routinely presenting prediction intervals in meta-analysis

被引:1437
作者
IntHout, Joanna [1 ]
Ioannidis, John P. A. [2 ,3 ,4 ,5 ]
Rovers, Maroeska M. [1 ]
Goeman, Jelle J. [1 ]
机构
[1] Radboud Univ Nijmegen, RIHS, Med Ctr, Nijmegen, Netherlands
[2] Stanford Univ, Dept Med, Stanford Prevent Res Ctr, Sch Humanities & Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Hlth Res & Policy, Sch Med, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Stat, Sch Humanities & Sci, Stanford, CA 94305 USA
[5] Stanford Univ, Meta Res Innovat Ctr Stanford METRICS, Stanford, CA 94305 USA
关键词
HETEROGENEITY;
D O I
10.1136/bmjopen-2015-010247
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives: Evaluating the variation in the strength of the effect across studies is a key feature of metaanalyses. This variability is reflected by measures like tau(2) or I-2, but their clinical interpretation is not straightforward. A prediction interval is less complicated: it presents the expected range of true effects in similar studies. We aimed to show the advantages of having the prediction interval routinely reported in meta-analyses. Design: We show how the prediction interval can help understand the uncertainty about whether an intervention works or not. To evaluate the implications of using this interval to interpret the results, we selected the first meta-analysis per intervention review of the Cochrane Database of Systematic Reviews Issues 2009-2013 with a dichotomous ( n= 2009) or continuous ( n= 1254) outcome, and generated 95% prediction intervals for them. Results: In 72.4% of 479 statistically significant ( random-effects p< 0.05) meta-analyses in the Cochrane Database 2009-2013 with heterogeneity ( I-2> 0), the 95% prediction interval suggested that the intervention effect could be null or even be in the opposite direction. In 20.3% of those 479 meta-analyses, the prediction interval showed that the effect could be completely opposite to the point estimate of the meta-analysis. We demonstrate also how the prediction interval can be used to calculate the probability that a new trial will show a negative effect and to improve the calculations of the power of a new trial. Conclusions: The prediction interval reflects the variation in treatment effects over different settings, including what effect is to be expected in future patients, such as the patients that a clinician is interested to treat. Prediction intervals should be routinely reported to allow more informative inferences in meta-analyses.
引用
收藏
页数:6
相关论文
共 19 条
[1]  
Borenstein M, 2009, INTRO METAANALYSIS
[2]   Meta-analyses: with confidence or prediction intervals? [J].
Chiolero, Arnaud ;
Santschi, Valerie ;
Burnand, Bernard ;
Platt, Robert W. ;
Paradis, Gilles .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2012, 27 (10) :823-825
[3]   Robust meta-analytic conclusions mandate the provision of prediction intervals in meta-analysis summaries [J].
Graham, Petra L. ;
Moran, John L. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2012, 65 (05) :503-510
[4]   A note on the graphical presentation of prediction intervals in random-effects meta-analyses [J].
Guddat C. ;
Grouven U. ;
Bender R. ;
Skipka G. .
Systematic Reviews, 1 (1)
[5]   Measuring inconsistency in meta-analyses [J].
Higgins, JPT ;
Thompson, SG ;
Deeks, JJ ;
Altman, DG .
BMJ-BRITISH MEDICAL JOURNAL, 2003, 327 (7414) :557-560
[6]   A re-evaluation of random-effects meta-analysis [J].
Higgins, Julian P. T. ;
Thompson, Simon G. ;
Spiegelhalter, David J. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2009, 172 :137-159
[7]   Small studies are more heterogeneous than large ones: a meta-meta-analysis [J].
IntHout, Joanna ;
Ioannidis, John P. A. ;
Borm, George F. ;
Goeman, Jelle J. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2015, 68 (08) :860-869
[8]   The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method [J].
IntHout, Joanna ;
Ioannidis, John P. A. ;
Borm, George F. .
BMC MEDICAL RESEARCH METHODOLOGY, 2014, 14
[9]   Uncertainty in heterogeneity estimates in meta-analyses [J].
Ioannidis, John P. A. ;
Patsopoulos, Nikolaos A. ;
Evangelou, Evangelos .
BMJ-BRITISH MEDICAL JOURNAL, 2007, 335 (7626) :914-916
[10]   RETRACTED: Topical steroids for nasal polyps (Retracted Article) [J].
Kalish, Larry ;
Snidvongs, Kornkiat ;
Sivasubramaniam, Rahuram ;
Cope, Daron ;
Harvey, Richard J. .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2012, (12)