Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension

被引:340
作者
Schulz, Eberhard [1 ]
Jansen, Thomas [1 ]
Wenzel, Philip [1 ]
Daiber, Andreas [1 ]
Muenzel, Thomas [1 ]
机构
[1] Med Klin 2, D-55131 Mainz, Germany
关键词
D O I
10.1089/ars.2007.1989
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endothelial dysfunction in the setting of cardiovascular risk factors such as hypercholesterolemia, diabetes mellitus, chronic smoking, as well hypertension, is, at least in part, dependent of the production of reactive oxygen species (ROS) and the subsequent decrease in vascular bioavailability of nitric oxide ( NO). ROS-producing enzymes involved in increased oxidative stress within vascular tissue include NADPH oxidase, xanthine oxidase, and mitochondrial superoxide producing enzymes. Superoxide produced by the NADPH oxidase may react with NO, thereby stimulating the production of the NO/superoxide reaction product peroxynitrite. Peroxynitrite in turn has been shown to uncouple eNOS, therefore switching an antiatherosclerotic NO producing enzyme to an enzyme that may accelerate the atherosclerotic process by producing superoxide. Increased oxidative stress in the vasculature, however, is not restricted to the endothelium and also occurs within the smooth muscle cell layer. Increased superoxide production has important consequences with respect to signaling by the soluble guanylate cyclase and the cGMP-dependent kinase I, which activity and expression is regulated in a redox-sensitive fashion. The present review will summarize current concepts concerning eNOS uncoupling, with special focus on the role of tetrahydrobiopterin in mediating eNOS uncoupling.
引用
收藏
页码:1115 / 1126
页数:12
相关论文
共 92 条
[1]   Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction [J].
Al Suwaidi, J ;
Hamasaki, S ;
Higano, ST ;
Nishimura, RA ;
Holmes, DR ;
Lerman, A .
CIRCULATION, 2000, 101 (09) :948-954
[2]   ASSEMBLY AND REGULATION OF NADPH OXIDASE AND NITRIC-OXIDE SYNTHASE [J].
BASTIAN, NR ;
HIBBS, JB .
CURRENT OPINION IN IMMUNOLOGY, 1994, 6 (01) :131-139
[3]   Hydralazine prevents endothelial dysfunction, but not the increase in superoxide production in nitric oxide-deficient hypertension [J].
Bauersachs, J ;
Bouloumié, A ;
Fraccarollo, D ;
Hu, K ;
Busse, R ;
Ertl, E .
EUROPEAN JOURNAL OF PHARMACOLOGY, 1998, 362 (01) :77-81
[4]   Oxidative damage and tyrosine nitration from peroxynitrite [J].
Beckman, JS .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (05) :836-844
[5]  
Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424
[6]   Stoichiometric relationships between endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and eNOS coupling in vivo - Insights from transgenic mice with endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression [J].
Bendall, JK ;
Alp, NJ ;
Warrick, N ;
Cai, SJ ;
Adlam, D ;
Rockett, K ;
Yokoyama, M ;
Kawashima, S ;
Channon, KM .
CIRCULATION RESEARCH, 2005, 97 (09) :864-871
[7]   LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells -: Involvement of S-adenosylmethionine-dependent methyltransferases [J].
Böger, RH ;
Sydow, K ;
Borlak, J ;
Thum, T ;
Lenzen, H ;
Schubert, B ;
Tsikas, D ;
Bode-Böger, SM .
CIRCULATION RESEARCH, 2000, 87 (02) :99-105
[8]   Endothelial dihydrofolate reductase: Critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase [J].
Chalupsky, K ;
Cai, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (25) :9056-9061
[9]   Upregulation of p67phox and gp91phox in aortas from angiotensin II-infused mice [J].
Cifuentes, ME ;
Rey, FE ;
Carretero, OA ;
Pagano, PJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2000, 279 (05) :H2234-H2240
[10]  
Closs EI, 2000, MOL PHARMACOL, V57, P68