Outstanding long-cycling lithium-sulfur batteries by core-shell structure of S@Pt composite with ultrahigh sulfur content

被引:92
作者
Gao, Mengqin [1 ]
Zhou, Wan-Ying [1 ]
Mo, Yu-Xue [1 ]
Sheng, Tian [2 ]
Deng, Yanhong [1 ]
Chen, Liezun [1 ]
Wang, Kai [4 ]
Tan, Yanliang [1 ]
Zhou, Haiqing [3 ]
机构
[1] Hengyang Normal Univ, Coll Phys & Elect Engn, Henghua Rd 16, Hengyang 421002, Hunan, Peoples R China
[2] Anhui Normal Univ, Coll Chem & Mat Sci, Wuhu 241000, Peoples R China
[3] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contro, Key Lab Matter Microstruct & Funct Hunan Prov, Minist Educ, Changsha 410081, Peoples R China
[4] Karlsruhe Inst Technol, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany
来源
ADVANCED POWDER MATERIALS | 2022年 / 1卷 / 01期
基金
中国国家自然科学基金;
关键词
Lithium-sulfur batteries; Wet chemistry; High sulfur content; Pt nanoshell; Carbon fibers layer; PERFORMANCE; POLYSULFIDE; GRAPHENE;
D O I
10.1016/j.apmate.2021.09.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here we proposed a novel approach to greatly enhance the electrochemical performance of Li-S batteries by designing a composite electrode material composed of a core-shell structure of S@Pt composite (sulfur content, 85%) grown on the S surface. The platinum (Pt) nanosheets provide physical barrier and strong chemical binding to anchor LiPSs and improve the electronic conductivity of S. Significantly, by introducing carbon nanofibers (CNFs) as the interlayer, we achieved outstanding Li-S battery with a high initial discharge capacity of 1040 mAh g-1 at 1.0C and a reversible capacity of 742 mAh g-1 after 350 cycles, demonstrating its excellent long-term cycling stability with a low capacity decay rate of 0.08% per cycle. According to the density functional theory (DFT) calculations, we proposed that the superior performance is attributed to the cooperative effects of the strong interfacial interaction between Pt (111) surface and the S8 molecule, and very low reaction energy of decomposition, -6.4 eV.
引用
收藏
页数:9
相关论文
共 47 条
[1]  
Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.94, 10.1038/NENERGY.2016.94]
[2]   Lithiated Defect Sites in Zr Metal-Organic Framework for Enhanced Sulfur Utilization in Li-S Batteries [J].
Baumann, Avery E. ;
Burns, David A. ;
Diaz, Jose C. ;
Thoi, V. Sara .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (02) :2159-2167
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Metal-organic framework MIL-101(Fe)-NH2 as an efficient host for sulphur storage in long-cycle Li-S batteries [J].
Capkova, D. ;
Almasi, M. ;
Kazda, T. ;
Cech, O. ;
Kiraly, N. ;
Cudek, P. ;
Fedorkova, A. Strakova ;
Hornebecq, V .
ELECTROCHIMICA ACTA, 2020, 354
[5]  
Chen J.Z., 2014, CARBON, V70, P319
[6]   Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries [J].
Chen, Renjie ;
Zhao, Teng ;
Lu, Jun ;
Wu, Feng ;
Li, Li ;
Chen, Junzheng ;
Tan, Guoqiang ;
Ye, Yusheng ;
Amine, Khalil .
NANO LETTERS, 2013, 13 (10) :4642-4649
[7]   3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries [J].
Chen, Shuangqiang ;
Huang, Xiaodan ;
Liu, Hao ;
Sun, Bing ;
Yeoh, Waikong ;
Li, Kefei ;
Zhang, Jinqiang ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2014, 4 (08)
[8]   Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction [J].
Conder, Joanna ;
Bouchet, Renaud ;
Trabesinger, Sigita ;
Marino, Cyril ;
Gubler, Lorenz ;
Villevieille, Claire .
NATURE ENERGY, 2017, 2 (06)
[9]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[10]   More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Wei ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED MATERIALS, 2017, 29 (48)