Adaptive Aerodynamic Design Optimization for Navier-Stokes Using Shape Derivatives with Discontinuous Galerkin Methods

被引:3
作者
Kaland, L. [1 ,2 ]
Sonntag, M. [1 ,2 ]
Gauger, N. R. [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Dept Math, Computat Math Grp, D-52062 Aachen, Germany
[2] Rhein Westfal TH Aachen, CCES, D-52062 Aachen, Germany
来源
ADVANCES IN EVOLUTIONARY AND DETERMINISTIC METHODS FOR DESIGN, OPTIMIZATION AND CONTROL IN ENGINEERING AND SCIENCES | 2015年 / 36卷
关键词
One-shot method; Function space analysis; Design optimization; Adaptivity; Shape derivative;
D O I
10.1007/978-3-319-11541-2_9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We state and analyze one-shot optimization methods in a function space setting for optimal control problems, for which the state equation is given in terms of a fixed-point equation. Further, we concentrate on the application of a design optimization problem incorporating the solution of the compressible Navier-Stokes equations using a discontinuous Galerkin method. For the given primal fixed-point solver an appropriate adjoint solver is constructed. For the following design update we compute the shape derivative analytically based on the weak formulation of the governing equations. The primal, adjoint and design updates are performed in a one-shot manner, i.e., the corresponding equations are not fully solved, instead only a few iteration steps are performed. Finally, we add an additional adaptive step. During the optimization routine we refine or coarsen the grid to obtain a better accuracy.
引用
收藏
页码:143 / 158
页数:16
相关论文
共 18 条
[1]  
[Anonymous], THESIS U TRIER TRIER
[2]   Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver [J].
Biros, G ;
Ghattas, O .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :687-713
[3]   Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids [J].
Castro, Carlos ;
Lozano, Carlos ;
Palacios, Francisco ;
Zuazua, Enrique .
AIAA JOURNAL, 2007, 45 (09) :2125-2139
[4]  
DELFOUR MC, 2001, SHAPES GEOMETRIES SO
[5]  
Gauger N., 2012, Constrained optimization and optimal control for partial differential equations, P99, DOI [10.1007/978-3-0348-0133-1_6, DOI 10.1007/978-3-0348-0133-1_6]
[6]   Properties of an augmented Lagrangian for design optimization [J].
Hamdi, Adel ;
Griewank, Andreas .
OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (04) :645-664
[7]   Discontinuous Galerkin methods for computational aerodynamics-3D adaptive flow simulation with the DLR PADGE code [J].
Hartmann, R. ;
Held, J. ;
Leicht, T. ;
Prill, F. .
AEROSPACE SCIENCE AND TECHNOLOGY, 2010, 14 (07) :512-519
[8]  
Hartmann R, 2005, VKI LS 2006 01
[9]  
Hartmann R, 2008, VKI LS 2008 08
[10]   Aerodynamic shape optimization using simultaneous pseudo-timestepping [J].
Hazra, SB ;
Schulz, V ;
Brezillon, J ;
Gauger, NR .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (01) :46-64