Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities

被引:54
作者
Gurbuz, Mustafa [1 ]
Akdemir, Ahmet Ocak [2 ]
Rashid, Saima [3 ]
Set, Erhan [4 ]
机构
[1] Ibrahim Cecen Univ Agri, Fac Educ, Dept Math, Agri, Turkey
[2] Ibrahim Cecen Univ Agri, Fac Arts & Sci, Dept Math, Agri, Turkey
[3] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[4] Ordu Univ, Fac Arts & Sci, Dept Math, Ordu, Turkey
关键词
Caputo-Fabrizio Fractional integral; Convexity;
D O I
10.1186/s13660-020-02438-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, firstly, Hermite-Hadamard's inequality is generalized via a fractional integral operator associated with the Caputo-Fabrizio fractional derivative. Then a new kernel is obtained and a new theorem valid for convex functions is proved for fractional order integrals. Also, some applications of our main findings are given.
引用
收藏
页数:10
相关论文
共 25 条
[1]   Fractional operators with exponential kernels and a Lyapunov type inequality [J].
Abdeljawad, Thabet .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[2]   ON FRACTIONAL DERIVATIVES WITH EXPONENTIAL KERNEL AND THEIR DISCRETE VERSIONS [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
REPORTS ON MATHEMATICAL PHYSICS, 2017, 80 (01) :11-27
[3]  
[Anonymous], 2020, SYMMETRY BASEL, DOI DOI 10.3390/sym12020222
[4]   A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model [J].
Arshad, Sadia ;
Defterli, Ozlem ;
Baleanu, Dumitru .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 374
[5]   A mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the Rubella disease model [J].
Baleanu, Dumitru ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[6]   A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative [J].
Baleanu, Dumitru ;
Jajarmi, Amin ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
CHAOS SOLITONS & FRACTALS, 2020, 134
[7]  
Caputo M., 2015, PROG FRACT DIFFER AP, V1, P73, DOI DOI 10.12785/PFDA/010201
[8]  
Das S, 2011, FUNCTIONAL FRACTIONAL CALCULUS, SECOND EDITION, P1, DOI 10.1007/978-3-642-20545-3
[9]   Analysis of Keller-Segel Model with Atangana-Baleanu Fractional Derivative [J].
Dokuyucu, Mustafa Ali ;
Baleanu, Dumitru ;
Celik, Ercan .
FILOMAT, 2018, 32 (16) :5633-5643
[10]   Cancer treatment model with the Caputo-Fabrizio fractional derivative [J].
Dokuyucu, Mustafa Ali ;
Celik, Ercan ;
Bulut, Hasan ;
Baskonus, Haci Mehmet .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03)