A mechanism for cognitive dynamics: neuronal communication through neuronal coherence

被引:2958
作者
Fries, P [1 ]
机构
[1] Radboud Univ Nijmegen, FC Donders Ctr Cognit Neuroimaging, NL-6525 EN Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Dept Biophys, NL-6525 EZ Nijmegen, Netherlands
关键词
D O I
10.1016/j.tics.2005.08.011
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
At any one moment, many neuronal groups in our brain are active. Microelectrode recordings have characterized the activation of single neurons and fMRI has unveiled brain-wide activation patterns. Now it is time to understand how the many active neuronal groups interact with each other and how their communication is flexibly modulated to bring about our cognitive dynamics. I hypothesize that neuronal communication is mechanistically subserved by neuronal coherence. Activated neuronal groups oscillate and thereby undergo rhythmic excitability fluctuations that produce temporal windows for communication. Only coherently oscillating neuronal groups can interact effectively, because their communication windows for input and for output are open at the same times. Thus, a flexible pattern of coherence defines a flexible communication structure, which subserves our cognitive flexibility.
引用
收藏
页码:474 / 480
页数:7
相关论文
共 50 条
[1]   Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo [J].
Azouz, R ;
Gray, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :8110-8115
[2]   Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo [J].
Azouz, R ;
Gray, CM .
NEURON, 2003, 37 (03) :513-523
[3]   Bi-directional interactions between visual areas in the awake behaving cat [J].
Bernasconi, C ;
von Stein, A ;
Chiang, C ;
König, P .
NEUROREPORT, 2000, 11 (04) :689-692
[4]  
BRAGIN A, 1995, J NEUROSCI, V15, P47
[5]   EPISODIC MULTIREGIONAL CORTICAL COHERENCE AT MULTIPLE FREQUENCIES DURING VISUAL TASK-PERFORMANCE [J].
BRESSLER, SL ;
COPPOLA, R ;
NAKAMURA, R .
NATURE, 1993, 366 (6451) :153-156
[6]   Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality [J].
Brovelli, A ;
Ding, MZ ;
Ledberg, A ;
Chen, YH ;
Nakamura, R ;
Bressler, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (26) :9849-9854
[7]   Gamma frequency oscillations gate temporally coded afferent inputs in the rat hippocampal slice [J].
Burchell, TR ;
Faulkner, HJ ;
Whittington, MA .
NEUROSCIENCE LETTERS, 1998, 255 (03) :151-154
[8]   COHERENT OSCILLATIONS - A MECHANISM OF FEATURE LINKING IN THE VISUAL-CORTEX - MULTIPLE ELECTRODE AND CORRELATION ANALYSES IN THE CAT [J].
ECKHORN, R ;
BAUER, R ;
JORDAN, W ;
BROSCH, M ;
KRUSE, W ;
MUNK, M ;
REITBOECK, HJ .
BIOLOGICAL CYBERNETICS, 1988, 60 (02) :121-130
[9]   SYNCHRONIZATION OF OSCILLATORY NEURONAL RESPONSES BETWEEN STRIATE AND EXTRASTRIATE VISUAL CORTICAL AREAS OF THE CAT [J].
ENGEL, AK ;
KREITER, AK ;
KONIG, P ;
SINGER, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (14) :6048-6052
[10]   Dynamic predictions: Oscillations and synchrony in top-down processing [J].
Engel, AK ;
Fries, P ;
Singer, W .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (10) :704-716