Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion

被引:48
作者
Wang, Mingxin [1 ,2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
[2] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
关键词
prey predator model; stage structure; diffusion; stability; Hopf bifurcation;
D O I
10.1016/j.mbs.2007.08.008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we first propose a prey-predator model with prey-stage structure and diffusion. Then we discuss the following three problems: (1) stability of non-negative constant steady states for the reduced ODE system and the corresponding reaction diffusion system with homogeneous Neumann boundary conditions; (2) Hopf bifurcation for the ODE system; (3) Hopf bifurcation created by diffusion. (c) 2008 Published by Elsevier Inc.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 34 条
[1]   Multiparametric bifurcation analysis of a basic two-stage population model [J].
Baer, S. M. ;
Kooi, B. W. ;
Kuznetsov, Yu. A. ;
Thieme, H. R. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1339-1365
[2]   Predator-prey interactions with delays due to juvenile maturation [J].
Cooke, KL ;
Elderkin, RH ;
Huang, WZ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (03) :1050-1079
[3]  
Cushing J.M., 1998, INTRO STRUCTURED POP, V71
[4]   Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation [J].
Du, YH ;
Lou, Y .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :321-349
[5]  
DU YH, IN PRESS SIAM J APPL
[6]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[7]   A stage structured predator-prey model and its dependence on maturation delay and death rate [J].
Gourley, SA ;
Kuang, Y .
JOURNAL OF MATHEMATICAL BIOLOGY, 2004, 49 (02) :188-200
[8]   AGE-DEPENDENT PREDATION IS NOT A SIMPLE PROCESS .1. CONTINUOUS-TIME MODELS [J].
HASTINGS, A .
THEORETICAL POPULATION BIOLOGY, 1983, 23 (03) :347-362
[9]  
Henry D., 1993, LECT NOTES MATH, V840
[10]   The stability of spike solutions to the one-dimensional Gierer-Meinhardt model [J].
Iron, D ;
Ward, MJ ;
Wei, JC .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 150 (1-2) :25-62