J1-J2 Heisenberg model at and close to its z=4 quantum critical point

被引:33
作者
Sirker, J. [1 ,2 ]
Krivnov, V. Y. [3 ]
Dmitriev, D. V. [3 ]
Herzog, A. [1 ]
Janson, O. [4 ]
Nishimoto, S. [5 ]
Drechsler, S. -L. [5 ]
Richter, J. [6 ]
机构
[1] Tech Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Tech Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] RAS, Joint Inst Chem Phys, Moscow 119334, Russia
[4] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[5] IFW Dresden, D-01171 Dresden, Germany
[6] Univ Magdeburg, Inst Theoret Phys, D-39016 Magdeburg, Germany
关键词
MATRIX RENORMALIZATION-GROUP; NEAREST-NEIGHBOR INTERACTIONS; LOW-TEMPERATURE; GROUND-STATE; SPIN CHAIN; DIMENSIONS; SYSTEMS; THERMODYNAMICS; FERROMAGNETS; DIMERIZATION;
D O I
10.1103/PhysRevB.84.144403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the frustrated J(1) - J(2) Heisenberg model with ferromagnetic nearest-neighbor coupling J(1) < 0 and antiferromagnetic next-nearest-neighbor coupling J(2) > 0 at and close to the z = 4 quantum critical point (QCP) at J(1)/J(2) = -4. The J(1) - J(2) model plays an important role for recently synthesized chain cuprates as well as in supersymmetric Yang-Mills theories. We study the thermodynamic properties using field theory, a modified spin-wave theory, as well as numerical density-matrix renormalization group calculations. Furthermore, we compare with results for the classical model obtained by analytical methods and Monte Carlo simulations. As one of our main results, we present numerical evidence that the susceptibility at the QCP seems to diverge with temperature T as chi similar to T-1.2 in the quantum case, in contrast to the classical model where chi similar to T-4/3.
引用
收藏
页数:8
相关论文
共 51 条
[1]   CONDITIONS FOR A FERROMAGNETIC GROUND-STATE OF HEISENBERG HAMILTONIANS [J].
BADER, HP ;
SCHILLING, R .
PHYSICAL REVIEW B, 1979, 19 (07) :3556-3560
[2]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[3]  
Beisert N, 2003, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2003/09/010
[4]   The dilatation operator of conformal N=4 super-Yang-Mills theory [J].
Beisert, N ;
Kristjansen, C ;
Staudacher, M .
NUCLEAR PHYSICS B, 2003, 664 (1-2) :131-184
[5]   NUMERICAL AND APPROXIMATE ANALYTICAL RESULTS FOR THE FRUSTRATED SPIN-1/2 QUANTUM SPIN CHAIN [J].
BURSILL, R ;
GEHRING, GA ;
FARNELL, DJJ ;
PARKINSON, JB ;
XIANG, T ;
ZENG, C .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (45) :8605-8618
[6]   The density matrix renormalization group for a quantum spin chain at non-zero temperature [J].
Bursill, RJ ;
Xiang, T ;
Gehring, GA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (40) :L583-L590
[7]   DENSITY-MATRIX RENORMALIZATION-GROUP STUDIES OF THE SPIN-1/2 HEISENBERG SYSTEMS WITH DIMERIZATION AND FRUSTRATION [J].
CHITRA, R ;
PATI, S ;
KRISHNAMURTHY, HR ;
SEN, D ;
RAMASESHA, S .
PHYSICAL REVIEW B, 1995, 52 (09) :6581-6587
[8]   Universal low-temperature properties of frustrated classical spin chain near the ferromagnet-helimagnet transition point [J].
Dmitriev, D. V. ;
Krivnov, V. Ya .
EUROPEAN PHYSICAL JOURNAL B, 2011, 82 (02) :123-131
[9]   Low-temperature properties of a classical zigzag spin chain near the ferromagnet-helimagnet transition point [J].
Dmitriev, D. V. ;
Krivnov, V. Ya. .
PHYSICAL REVIEW B, 2010, 82 (05)
[10]   Weakly anisotropic frustrated zigzag spin chain [J].
Dmitriev, D. V. ;
Krivnov, V. Ya. .
PHYSICAL REVIEW B, 2008, 77 (02)