Light isotope separation in carbon nanotubes through quantum molecular sieving

被引:92
作者
Challa, SR
Sholl, DS
Johnson, JK [1 ]
机构
[1] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[2] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
关键词
D O I
10.1103/PhysRevB.63.245419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The theoretical basis for the phenomenon of quantum sieving is detailed for confined one-dimensional systems. A simple theory is presented to calculate zero-pressure selectivities due to quantum sieving in nanopores. This simple theory is used to evaluate the ability of various carbon nanotubes and interstices of nanotubes to separate mixtures of light-isotope species. Realistic and accurate potentials are used for the interactions between adsorbates and nanotubes. Path integral molecular simulations are also used to determine quantum sieving zero-pressure selectivities. Good agreement is found between the simple theory and detailed path integral calculations. Systems of H-2-T-2, and He-3-He-4 are studied in this work, as well as CH4-CD4 and H-2-HD.
引用
收藏
页数:9
相关论文
共 45 条
[1]   OPENING CARBON NANOTUBES WITH OXYGEN AND IMPLICATIONS FOR FILLING [J].
AJAYAN, PM ;
EBBESEN, TW ;
ICHIHASHI, T ;
IIJIMA, S ;
TANIGAKI, K ;
HIURA, H .
NATURE, 1993, 362 (6420) :522-525
[2]  
Allen M. P., 1987, Computer Simulation of Liquids
[3]  
AMELINCKX S, 1994, SCIENCE, V273, P483
[4]   Simulations of binary mixture adsorption in carbon nanotubes: Transitions in adsorbed fluid composition [J].
Ayappa, KG .
LANGMUIR, 1998, 14 (04) :880-890
[6]   MOLECULAR-TRANSPORT IN SUBNANOMETER PORES - ZERO-POINT ENERGY, REDUCED DIMENSIONALITY AND QUANTUM SIEVING [J].
BEENAKKER, JJM ;
BORMAN, VD ;
KRYLOV, SY .
CHEMICAL PHYSICS LETTERS, 1995, 232 (04) :379-382
[7]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[8]   Quantum rotation of hydrogen in single-wall carbon nanotubes [J].
Brown, CM ;
Yildirim, T ;
Neumann, DA ;
Heben, MJ ;
Gennett, T ;
Dillon, AC ;
Alleman, JL ;
Fischer, JE .
CHEMICAL PHYSICS LETTERS, 2000, 329 (3-4) :311-316
[9]  
CHALLA SR, UNPUBA S
[10]   THE INTERACTION BETWEEN NOBLE-GASES AND THE BASAL-PLANE SURFACE OF GRAPHITE [J].
COLE, MW ;
KLEIN, JR .
SURFACE SCIENCE, 1983, 124 (2-3) :547-554