Counting divisors of Lucas numbers

被引:2
作者
Moree, P [1 ]
机构
[1] Max Planck Inst Math, D-53225 Bonn, Germany
关键词
D O I
10.2140/pjm.1998.186.267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Lucas numbers L-n are defined by L-0 = 2, L-1 = 1 and the recurrence L-n = Ln-1 + Ln-2. An estimate for the number of m less than or equal to x such that m divides some Lucas number is established. This estimate has error of order x log(epsilon-1) x for every epsilon > 0.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 29 条
[1]  
[Anonymous], 1961, PACIFIC J MATH
[2]  
BALLOT C, 1995, MEM AM MATH SOC, V551, P102
[3]  
CASSELS JWS, 1967, ALGEBRAIC NUMER THEO
[4]  
ELLIOTT PDT, 1970, P LOND MATH SOC, V21, P28
[5]  
Halter-Koch F., 1971, J NUMBER THEORY, V3, P412
[7]  
Hasse H., 1967, VORLESUNGEN KLASSENK
[8]  
Kanwar P., 1997, Finite Fields and their Applications, V3, P334, DOI 10.1006/ffta.1997.0189
[9]   THE SET OF PRIMES DIVIDING THE LUCAS-NUMBERS HAS DENSITY 2/3 (VOL 118, PG 449, 1985) [J].
LAGARIAS, JC .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 162 (02) :393-396
[10]   On ideals and primary ideals in ideal classes [J].
Landau, E .
MATHEMATISCHE ZEITSCHRIFT, 1918, 2 :52-154