Biogas from microalgae: an overview emphasizing pretreatment methods and their energy return on investment (EROI)

被引:14
作者
Marques, Aline de Luna [1 ]
Fernandes Araujo, Ofelia de Queiroz [1 ]
Cammarota, Magali Christe [1 ]
机构
[1] Univ Fed Rio de Janeiro, Sch Chem, Ave Athos da Silveira Ramos 149,Bloco E,Sala 200, BR-21941909 Rio De Janeiro, Brazil
关键词
Microalgae; Pretreatment; Anaerobic digestion; Biogas; Energy balance; EROI; ANAEROBIC-DIGESTION; THERMAL PRETREATMENT; CHLORELLA-VULGARIS; METHANE PRODUCTION; BIOMASS; HYDROLYSIS;
D O I
10.1007/s10529-018-2629-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Studies have reported enhancements in methane yield from pretreatment methods that benefit the anaerobic digestion (AD) of microalgae. However, energy return on investment (EROI), i.e., methane production enhancement achieved over energy input, may be unfavorable. Aiming to quantify EROI of AD microalgae pretreatment, about 180 experiments applied to 30 microalgae biomasses were compiled through an extensive literature survey, classified into 4 pretreatments (physical, enzymatic, chemical, and hybrid), and analyzed. Most of these pretreatments enhanced methane yield, especially the enzymatic alternative. EROI was evaluated for the most efficient pretreatments. Only in one thermal pretreatment the energy resulting from the increase in methane production exceeded the energy demanded by the biomass pretreatment (EROI 6.8) and other two thermal pretreatments presented EROI 1. The other pretreatments presented EROI<1, concluding that none of the evaluated methods was energy-efficient. Feasibility of pretreatment requires advancements in low energy-demanding strategies and outstanding biomass densification.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 36 条
  • [1] Biochemical methane potential of microalgae biomass after lipid extraction
    Alzate, M. E.
    Munoz, R.
    Rogalla, F.
    Fdz-Polanco, F.
    Perez-Elvira, S. I.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2014, 243 : 405 - 410
  • [2] Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment
    Alzate, M. E.
    Munoz, R.
    Rogalla, F.
    Fdz-Polanco, F.
    Perez-Elvira, S. I.
    [J]. BIORESOURCE TECHNOLOGY, 2012, 123 : 488 - 494
  • [3] [Anonymous], CATALYSTS, DOI DOI 10.1016/j.biortech.2012.01.043
  • [4] [Anonymous], MICROALGAE BASED BIO, DOI DOI 10.1016/j.rser.2016.11.045
  • [5] Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR
    Arnold, Alexandre A.
    Genard, Bertrand
    Zito, Francesca
    Tremblay, Rejean
    Warschawski, Dror E.
    Marcotte, Isabelle
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2015, 1848 (01): : 369 - 377
  • [6] Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis
    Banerjee, Avik
    Maiti, Subodh K.
    Guria, Chandan
    Banerjee, Chiranjib
    [J]. BIOTECHNOLOGY LETTERS, 2017, 39 (01) : 1 - 11
  • [7] The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains
    Bohutskyi, Pavlo
    Betenbaugh, Michael J.
    Bouwer, Edward J.
    [J]. BIORESOURCE TECHNOLOGY, 2014, 155 : 366 - 372
  • [8] Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production
    Cho, Sunja
    Park, Seonghwan
    Seon, Jiyun
    Yu, Jaechul
    Lee, Taeho
    [J]. BIORESOURCE TECHNOLOGY, 2013, 143 : 330 - 336
  • [9] Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production
    Gonzalez-Fernandez, C.
    Sialve, B.
    Bernet, N.
    Steyer, J. P.
    [J]. BIORESOURCE TECHNOLOGY, 2012, 110 : 610 - 616
  • [10] Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion
    Jankowska, Ewelina
    Sahu, Ashish K.
    Oleskowicz-Popiel, Piotr
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 75 : 692 - 709