Well-Posedness and Singularity Formation for Inviscid Keller-Segel-Fluid System of Consumption Type

被引:10
作者
Jeong, In-Jee [1 ,2 ]
Kang, Kyungkeun [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
[2] Seoul Natl Univ, RIM, Seoul, South Korea
[3] Yonsei Univ, Dept Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
PARTIAL-DIFFERENTIAL EQUATIONS; GLOBAL-SOLUTIONS; CHEMOTAXIS; STABILIZATION; REGULARITY; MODEL;
D O I
10.1007/s00220-021-04292-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Keller-Segel system of consumption type coupled with an incompressible fluid equation. The system describes the dynamics of oxygen and bacteria densities evolving within a fluid. We establish local well-posedness of the system in Sobolev spaces for partially inviscid and fully inviscid cases. In the latter, additional assumptions on the initial data are required when either the oxygen or bacteria density touches zero. Even though the oxygen density satisfies a maximum principle due to consumption, we prove finite time blow-up of its C-2-norm with certain initial data.
引用
收藏
页码:1175 / 1217
页数:43
相关论文
共 30 条
[1]   Global classical solutions for chemotaxis-fluid systems in two dimensions [J].
Ahn, Jaewook ;
Kang, Kyungkeun ;
Yoon, Changwook .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) :2254-2264
[2]   ON A KELLER-SEGEL SYSTEM WITH LOGARITHMIC SENSITIVITY AND NON-DIFFUSIVE CHEMICAL [J].
Ahn, Jaewook ;
Kang, Kyungkeun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (12) :5165-5179
[3]  
[Anonymous], 2004, Milan J. Math.
[4]  
Bae H., ARXIV200111937
[5]   Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain [J].
Chae, Myeongju ;
Choi, Kyudong ;
Kang, Kyungkeun ;
Lee, Jihoon .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (01) :237-279
[6]   A regularity condition and temporal asymptotics for chemotaxis-fluid equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon ;
Lee, Ki-Ahm .
NONLINEARITY, 2018, 31 (02) :351-387
[7]   ASYMPTOTIC BEHAVIORS OF SOLUTIONS FOR AN AEROTAXIS MODEL COUPLED TO FLUID EQUATIONS [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (01) :127-146
[8]   Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1205-1235
[9]   EXISTENCE OF SMOOTH SOLUTIONS TO COUPLED CHEMOTAXIS-FLUID EQUATIONS [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) :2271-2297
[10]   Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach [J].
Chertock, A. ;
Fellner, K. ;
Kurganov, A. ;
Lorz, A. ;
Markowich, P. A. .
JOURNAL OF FLUID MECHANICS, 2012, 694 :155-190