Embedded minimal surfaces: Forces, topology and symmetries

被引:13
作者
Ros, A [1 ]
机构
[1] UNIV GRANADA,FAC CIENCIAS,DEPT GEOMETRIA & TOPOL,E-18071 GRANADA,SPAIN
关键词
D O I
10.1007/s005260050050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove topological uniqueness theorems for embedded minimal surfaces in R(3) under the assumption that certain forces associated to these surfaces are vertical. We give applications to minimal surfaces with symmetries and with free boundary.
引用
收藏
页码:469 / 496
页数:28
相关论文
共 22 条
[1]  
ANDERSON MT, 1992, J DIFFER GEOM, V35, P265
[2]  
[Anonymous], 1986, SURVEY MINIMAL SURFA
[3]  
CHEEGER J, 1970, AM J MATH, V92, P64
[4]  
Costa C.J., 1984, Boletim da Sociedade Brasileira de Matematica-Bulletin/Brazilian Mathematical Society, V15, P47, DOI DOI 10.1007/BF02584707
[5]   EMBEDDED MINIMAL-SURFACES OF FINITE TOPOLOGY [J].
HOFFMAN, D ;
MEEKS, WH .
ANNALS OF MATHEMATICS, 1990, 131 (01) :1-34
[6]   THE STRONG HALF-SPACE THEOREM FOR MINIMAL-SURFACES [J].
HOFFMAN, D ;
MEEKS, WH .
INVENTIONES MATHEMATICAE, 1990, 101 (02) :373-377
[7]   A CONVERGENCE THEOREM FOR RIEMANNIAN-MANIFOLDS AND SOME APPLICATIONS [J].
KASUE, A .
NAGOYA MATHEMATICAL JOURNAL, 1989, 114 :21-51
[8]  
Korevaar N.J., 1993, P S PURE MATH 1, V54, P291
[9]   A MAXIMUM PRINCIPLE AT INFINITY FOR MINIMAL-SURFACES AND APPLICATIONS [J].
LANGEVIN, R ;
ROSENBERG, H .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :819-828
[10]  
LOPEZ FJ, 1991, J DIFFER GEOM, V33, P293