共 46 条
Circular noncoding RNA circ_0007865, serves as a competing endogenous RNA, targeting the miR-214-3p/FKBP5 axis to regulate oxygen-glucose deprivation-induced injury in brain microvascular endothelial cells
被引:10
|作者:
Liu, Jinghua
[1
]
Zhang, Hong
[2
]
Di, Kuiyi
[1
]
Hou, Liying
[3
]
Yu, Shanshan
[4
]
机构:
[1] Second Peoples Hosp Dongying, Dept Neurol, Dongying, Peoples R China
[2] Tianjin Tianshi Coll, Sch Med, Tianjin, Peoples R China
[3] Second Peoples Hosp Dongying, Joint Trauma Surg, Dongying, Peoples R China
[4] Second Peoples Hosp Dongying, Dept Pharm, 28 Changchun Rd, Dongying 257000, Shandong, Peoples R China
来源:
关键词:
circ_0007865;
FKBP5;
ischemic stroke;
miR-214-3p;
oxygen-glucose deprivation;
ISCHEMIC-STROKE;
GLOBAL BURDEN;
PREDICTION;
D O I:
10.1097/WNR.0000000000001751
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Background Ischemic stroke (IS) is a major cause of permanent morbidity and lifelong disability worldwide. Circular RNA (circRNA) circ_0007865 has been reported to be upregulated in acute ischemic stroke (AIS) patients. Also, AIS patients exhibited increased death of human brain microvascular endothelial cells (HBMECs). This study is designed to explore the role and mechanism of circ_0007865 in the oxygen-glucose deprivation (OGD)-induced cell damage in AIS. Methods Circ_0007865, microRNA-214-3p (miR-214-3p), and FK506-binding protein 5 (FKBP5) levels were detected by real-time quantitative PCR. Cell proliferative angiogenesis, migration, and apoptosis were assessed by Cell Counting Kit-8, 5-ethynyl-2 '-deoxyuridine, colony formation, tube formation, wound healing, transwell, and flow cytometry assays. B-cell lymphoma-2 (Bcl-2), Bcl-2-related X protein (Bax), cleaved caspase-3, and FKBP5 protein levels were determined by western blot assay. The binding relationship between miR-214-3p and circ_0007865 or FKBP5 was predicted by StarBase, and verified by a dual-luciferase reporter, RNA pull-down assay. Results Circ_0007865 and FKBP5 were increased, and miR-214-3p was decreased in OGD-treated HBMECs. Furthermore, the silencing of circ_0007865 could promote cell proliferative angiogenesis, migration, and inhibit apoptosis in OGD-triggered HBMECs in vitro. Mechanically, circ_0007865 acted as a sponge of miR-214-3p to regulate FKBP5. Conclusion According to these results, circ_0007865 deficiency could attenuate OGD-induced HBMEC damage by modulating the miR-214-3p/FKBP5 axis, hinting at a promising therapeutic target for future acute IS therapy.
引用
收藏
页码:163 / 172
页数:10
相关论文