Metabolic Engineering of Escherichia coli for Hyperoside Biosynthesis

被引:11
作者
Li, Guosi [1 ]
Zhu, Fucheng [1 ]
Wei, Peipei [1 ]
Xue, Hailong [2 ]
Chen, Naidong [1 ]
Lu, Baowei [1 ]
Deng, Hui [1 ]
Chen, Cunwu [1 ]
Yin, Xinjian [3 ]
机构
[1] West Anhui Univ, Dept Biol & Pharmaceut Engn, Anhui Engn Lab Conservat & Sustainable Utilizat T, Luan 237012, Peoples R China
[2] Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Minist Educ, Hangzhou 310027, Peoples R China
[3] Sun Yat Sen Univ, Sch Marine Sci, Zhuhai 519080, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
hyperoside; quercetin; UDP-dependent glycosyltransferase; UDP-glucose; metabolic engineering; IN-VIVO; QUERCETIN; FLAVONOIDS; GENE; GLYCOSYLTRANSFERASE; IDENTIFICATION; REGENERATION; PURIFICATION; CLONING; DAMAGE;
D O I
10.3390/microorganisms10030628
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hyperoside (quercetin 3-O-galactoside) exhibits many biological functions, along with higher bioactivities than quercetin. In this study, three UDP-dependent glycosyltransferases (UGTs) were screened for efficient hyperoside synthesis from quercetin. The highest hyperoside production of 58.5 mg center dot L-1 was obtained in a recombinant Escherichia coli co-expressing UGT from Petunia hybrida (PhUGT) and UDP-glucose epimerase (GalE, a key enzyme catalyzing the conversion of UDP-glucose to UDP-galactose) from E. coli. When additional enzymes (phosphoglucomutase (Pgm) and UDP-glucose pyrophosphorylase (GalU)) were introduced into the recombinant E. coli, the increased flux toward UDP-glucose synthesis led to enhanced UDP-galactose-derived hyperoside synthesis. The efficiency of the recombinant strain was further improved by increasing the copy number of the PhUGT, which is a limiting step in the bioconversion. Through the optimization of the fermentation conditions, the production of hyperoside increased from 245.6 to 411.2 mg center dot L-1. The production was also conducted using a substrate-fed batch fermentation, and the maximal hyperoside production was 831.6 mg center dot L-1, with a molar conversion ratio of 90.2% and a specific productivity of 27.7 mg center dot L-1 center dot h(-1) after 30 h of fermentation. The efficient hyperoside synthesis pathway described here can be used widely for the glycosylation of other flavonoids and bioactive substances.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Metabolic engineering for improving ectoine production in Escherichia coli [J].
Li, Ying ;
Zhang, Shuyan ;
Li, Hedan ;
Huang, Danyang ;
Liu, Ziwei ;
Gong, Dengke ;
Wang, Yang ;
Wang, Zhen ;
Wang, Xiaoyuan .
SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2024, 4 (01) :337-347
[42]   Multivariate modular metabolic engineering for enhanced L-methionine biosynthesis in Escherichia coli [J].
Li, Zhongcai ;
Liu, Qian ;
Sun, Jiahui ;
Sun, Jianjian ;
Li, Mingjie ;
Zhang, Yun ;
Deng, Aihua ;
Liu, Shuwen ;
Wen, Tingyi .
BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01)
[43]   Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol [J].
Camacho-Zaragoza, Jose M. ;
Hernandez-Chavez, Georgina ;
Moreno-Avitia, Fabian ;
Ramirez-Iniguez, Rene ;
Martinez, Alfredo ;
Bolivar, Francisco ;
Gosset, Guillermo .
MICROBIAL CELL FACTORIES, 2016, 15
[44]   Multivariate modular metabolic engineering for enhanced l-methionine biosynthesis in Escherichia coli [J].
Zhongcai Li ;
Qian Liu ;
Jiahui Sun ;
Jianjian Sun ;
Mingjie Li ;
Yun Zhang ;
Aihua Deng ;
Shuwen Liu ;
Tingyi Wen .
Biotechnology for Biofuels and Bioproducts, 16
[45]   Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor [J].
William B. Black ;
Derek Aspacio ;
Danielle Bever ;
Edward King ;
Linyue Zhang ;
Han Li .
Microbial Cell Factories, 19
[46]   Metabolic Engineering for Overproduction of Colanic Acid in Escherichia coli Mutant with Short Lipopolysaccharide [J].
Zhan, Yi ;
Qiao, Jun ;
Chen, Shanshan ;
Dong, Xiaofei ;
Wu, Yuanming ;
Wang, Zhen ;
Wang, Xiaoyuan .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (27) :8351-8364
[47]   Metabolic engineering strategies for caffeic acid production in Escherichia coli [J].
Hernandez-Chavez, Georgina ;
Martinez, Alfredo ;
Gosset, Guillermo .
ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2019, 38 (01) :19-26
[48]   Enhanced production of polysialic acid by metabolic engineering of Escherichia coli [J].
Chen, Fang ;
Tao, Yong ;
Jin, Cheng ;
Xu, Yang ;
Lin, Bai-Xue .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (06) :2603-2611
[49]   Metabolic engineering of Escherichia coli to produce a monophosphoryl lipid A adjuvant [J].
Ji, Yuhyun ;
An, Jinsu ;
Hwang, Dohyeon ;
Ha, Da Hui ;
Lim, Sang Min ;
Lee, Chankyu ;
Zhao, Jinshi ;
Song, Hyun Kyu ;
Yang, Eun Gyeong ;
Zhou, Pei ;
Chung, Hak Suk .
METABOLIC ENGINEERING, 2020, 57 (57) :193-202
[50]   Metabolic engineering applications of the Escherichia coli bacterial artificial chromosome [J].
Sjoberg, Gustav ;
Guevara-Martinez, Monica ;
van Maris, Antonius J. A. ;
Gustavsson, Martin .
JOURNAL OF BIOTECHNOLOGY, 2019, 305 :43-50