Discontinuous Bubble Immersed Finite Element Method for Poisson-Boltzmann Equation
被引:14
|
作者:
Kwon, In
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro,373-1 Guseong Dong, Daejeon 305701, South KoreaKorea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro,373-1 Guseong Dong, Daejeon 305701, South Korea
Kwon, In
[1
]
Kwak, Do Y.
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro,373-1 Guseong Dong, Daejeon 305701, South KoreaKorea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro,373-1 Guseong Dong, Daejeon 305701, South Korea
Kwak, Do Y.
[1
]
机构:
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro,373-1 Guseong Dong, Daejeon 305701, South Korea
We develop a numerical scheme for nonlinear Poisson-Boltzmann equation. First, we regularize the solution of PBE to remove the singularity. We introduce the discontinuous bubble function to treat the nonhomogeneous jump conditions of the regularized solution. Next, starting with an initial guess, we apply linearization to treat the nonlinearity. Then, we discretize the discontinuous bubble and the bilinear form of PBE. Finally, we solve the discretized linear problem by IFEM. This process is repeated by updating the previous approximation. We carry out numerical experiments. We observe optimal convergence rate for all examples.
机构:
Samsung Elect Semicond R&D Ctr, Hwaseong Si 18448, Gyeonggi Do, South KoreaSamsung Elect Semicond R&D Ctr, Hwaseong Si 18448, Gyeonggi Do, South Korea
Kwon, In
论文数: 引用数:
h-index:
机构:
Jo, Gwanghyun
Shin, Kwang-Seong
论文数: 0引用数: 0
h-index: 0
机构:
Wonkwang Univ, Dept Digital Content Engn, Iksan 460, Jeonbuk, South KoreaSamsung Elect Semicond R&D Ctr, Hwaseong Si 18448, Gyeonggi Do, South Korea