Discontinuous Bubble Immersed Finite Element Method for Poisson-Boltzmann Equation

被引:14
|
作者
Kwon, In [1 ]
Kwak, Do Y. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro,373-1 Guseong Dong, Daejeon 305701, South Korea
关键词
Biomolecular electrostatics; Poisson-Boltzmann equation; immersed finite element method; discontinuous bubble function; linearization; MATCHED INTERFACE; ELLIPTIC-EQUATIONS; ELECTROSTATICS; APPROXIMATION; SIMULATIONS; JUMP;
D O I
10.4208/cicp.OA-2018-0014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a numerical scheme for nonlinear Poisson-Boltzmann equation. First, we regularize the solution of PBE to remove the singularity. We introduce the discontinuous bubble function to treat the nonhomogeneous jump conditions of the regularized solution. Next, starting with an initial guess, we apply linearization to treat the nonlinearity. Then, we discretize the discontinuous bubble and the bilinear form of PBE. Finally, we solve the discretized linear problem by IFEM. This process is repeated by updating the previous approximation. We carry out numerical experiments. We observe optimal convergence rate for all examples.
引用
收藏
页码:928 / 946
页数:19
相关论文
共 50 条
  • [31] An Unfitted Finite Element Poisson-Boltzmann Solver with Automatic Resolving of Curved Molecular Surface
    Liu, Ziyang
    Gui, Sheng
    Lu, Benzhuo
    Zhang, Linbo
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (27): : 6463 - 6475
  • [32] A Finite Element Solution of Lateral Periodic Poisson-Boltzmann Model for Membrane Channel Proteins
    Ji, Nan
    Liu, Tiantian
    Xu, Jingjie
    Shen, Longzhu Q.
    Lu, Benzhuo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (03)
  • [33] Integrability and dynamics of the Poisson-Boltzmann equation in simple geometries
    Huang, Kaiyin
    Shi, Shaoyun
    Yang, Shuangling
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [34] Adaptive mesh enrichment for the Poisson-Boltzmann equation
    Dyshlovenko, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (01) : 198 - 208
  • [35] A Numerical Method for Poisson-Boltzmann Equation Using the Lambert W Function
    Yoon, Nam-Sik
    APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, 2023, 32 (03): : 69 - 72
  • [36] Investigation of the Limits of the Linearized Poisson-Boltzmann Equation
    Silva, Gabriel M.
    Liang, Xiaodong
    Kontogeorgis, Georgios M.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (22): : 4112 - 4131
  • [37] ON THE STRUCTURE OF DOUBLE LAYERS IN POISSON-BOLTZMANN EQUATION
    Fontelos, Marco A.
    Gamboa, Lucia B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (06): : 1939 - 1967
  • [38] Application of the homotopy analysis method to the Poisson-Boltzmann equation for semiconductor devices
    Nassar, Christopher J.
    Revelli, Joseph F.
    Bowman, Robert J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) : 2501 - 2512
  • [39] An immersed discontinuous finite element method for the Stokes problem with a moving interface
    Adjerid, Slimane
    Chaabane, Nabil
    Lin, Tao
    Yue, Pengtao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 540 - 559
  • [40] An accelerated nonlocal Poisson-Boltzmann equation solver for electrostatics of biomolecule
    Ying, Jinyong
    Xie, Dexuan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2018, 34 (11)