Discontinuous Bubble Immersed Finite Element Method for Poisson-Boltzmann Equation

被引:14
作者
Kwon, In [1 ]
Kwak, Do Y. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro,373-1 Guseong Dong, Daejeon 305701, South Korea
关键词
Biomolecular electrostatics; Poisson-Boltzmann equation; immersed finite element method; discontinuous bubble function; linearization; MATCHED INTERFACE; ELLIPTIC-EQUATIONS; ELECTROSTATICS; APPROXIMATION; SIMULATIONS; JUMP;
D O I
10.4208/cicp.OA-2018-0014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a numerical scheme for nonlinear Poisson-Boltzmann equation. First, we regularize the solution of PBE to remove the singularity. We introduce the discontinuous bubble function to treat the nonhomogeneous jump conditions of the regularized solution. Next, starting with an initial guess, we apply linearization to treat the nonlinearity. Then, we discretize the discontinuous bubble and the bilinear form of PBE. Finally, we solve the discretized linear problem by IFEM. This process is repeated by updating the previous approximation. We carry out numerical experiments. We observe optimal convergence rate for all examples.
引用
收藏
页码:928 / 946
页数:19
相关论文
共 46 条
[21]   A Consistent Immersed Finite Element Method for the Interface Elasticity Problems [J].
Jin, Sangwon ;
Kwak, Do Y. ;
Kyeong, Daehyeon .
ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
[22]  
JO G., 2017, COMPUT METHODS APPL
[23]  
KLAPPER I, 1986, Proteins Structure Function and Genetics, V1, P47, DOI 10.1002/prot.340010109
[24]  
Kwak D., 2015, Int. J. Pure Appl. Math, P471
[25]  
Kwak DY, 2017, INT J NUMER ANAL MOD, V14, P532
[26]   A STABILIZED P1-NONCONFORMING IMMERSED FINITE ELEMENT METHOD FOR THE INTERFACE ELASTICITY PROBLEMS [J].
Kwak, Do Y. ;
Jin, Sangwon ;
Kyeong, Daehyeon .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01) :187-207
[27]   AN ANALYSIS OF A BROKEN P1-NONCONFORMING FINITE ELEMENT METHOD FOR INTERFACE PROBLEMS [J].
Kwak, Do Y. ;
Wee, Kye T. ;
Chang, Kwang S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (06) :2117-2134
[28]   An Immersed Finite Element Method for the Elasticity Problems with Displacement Jump [J].
Kyeong, Daehyeon ;
Kwak, Do Young .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (02) :407-428
[29]   An immersed finite element space and its approximation capability [J].
Li, Z ;
Lin, T ;
Lin, Y ;
Rogers, RC .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) :338-367
[30]   New Cartesian grid methods for interface problems using the finite element formulation [J].
Li, ZL ;
Lin, T ;
Wu, XH .
NUMERISCHE MATHEMATIK, 2003, 96 (01) :61-98