Discontinuous Bubble Immersed Finite Element Method for Poisson-Boltzmann Equation

被引:14
作者
Kwon, In [1 ]
Kwak, Do Y. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro,373-1 Guseong Dong, Daejeon 305701, South Korea
关键词
Biomolecular electrostatics; Poisson-Boltzmann equation; immersed finite element method; discontinuous bubble function; linearization; MATCHED INTERFACE; ELLIPTIC-EQUATIONS; ELECTROSTATICS; APPROXIMATION; SIMULATIONS; JUMP;
D O I
10.4208/cicp.OA-2018-0014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a numerical scheme for nonlinear Poisson-Boltzmann equation. First, we regularize the solution of PBE to remove the singularity. We introduce the discontinuous bubble function to treat the nonhomogeneous jump conditions of the regularized solution. Next, starting with an initial guess, we apply linearization to treat the nonlinearity. Then, we discretize the discontinuous bubble and the bilinear form of PBE. Finally, we solve the discretized linear problem by IFEM. This process is repeated by updating the previous approximation. We carry out numerical experiments. We observe optimal convergence rate for all examples.
引用
收藏
页码:928 / 946
页数:19
相关论文
共 46 条
[1]  
Bashford D., 1997, Scientific Computing in Object-Oriented Parallel Environments. First International Conference, ISCOPE 97. Proceedings, P233
[2]   Discontinuous bubble scheme for elliptic problems with jumps in the solution [J].
Chang, Kwang S. ;
Kwak, D. Y. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (5-8) :494-508
[3]   A Contribution to the Theory of Electrocapillarity [J].
Chapman, David Leonard .
PHILOSOPHICAL MAGAZINE, 1913, 25 (148) :475-481
[4]   The finite element approximation of the nonlinear Poisson-Boltzmann equation [J].
Chen, Long ;
Holst, Michael J. ;
Xu, Jinchao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) :2298-2320
[5]  
Chern I.L., 2003, Methods Appl.Anal, V10, P309, DOI [DOI 10.4310/MAA.2003.V10.N2.A9, 10.4310/MAA.2003.v10.n2.a9]
[6]   Optimal convergence analysis of an immersed interface finite element method [J].
Chou, So-Hsiang ;
Kwak, Do Y. ;
Wee, K. T. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (02) :149-168
[7]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[8]   ELECTROSTATICS IN BIOMOLECULAR STRUCTURE AND DYNAMICS [J].
DAVIS, ME ;
MCCAMMON, JA .
CHEMICAL REVIEWS, 1990, 90 (03) :509-521
[9]  
Debye P, 1923, PHYS Z, V24, P185
[10]  
Derjaguin B., 1941, Acta Physicochim USSR, V14, P633, DOI DOI 10.1016/0079-6816(93)90013-L