On some classes of permutation polynomials

被引:12
作者
Akbary, Amir [1 ]
Alaric, Sean [1 ]
Wang, Qiang [2 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
lacunary sums of multinomial coefficients; permutation polynomials; Dickson polynomials; Lucas sequences;
D O I
10.1142/S1793042108001249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime and q = p(m). We investigate permutation properties of polynomials P(x) = x(r) + x(r+s) + ... + x(r+ks) ( 0 < r < q-1, 0 < s < q-1, and k >= 0) over a finite field F-q. More specifically, we construct several classes of permutation polynomials of this form over Fq. We also count the number of permutation polynomials in each class.
引用
收藏
页码:121 / 133
页数:13
相关论文
共 10 条
[1]   A generalized lucas sequence and permutation binomials [J].
Akbary, A ;
Wang, Q .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :15-22
[2]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (03) :243-246
[3]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD .2. [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (01) :71-74
[4]  
Lidl R., 1997, Encycl. Math. Appl., V20
[5]   PERMUTATION PROPERTIES OF THE POLYNOMIALS 1+X+ ... +X(K) OVER A FINITE-FIELD [J].
MATTHEWS, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (01) :47-51
[6]  
Mullen G. L., 1993, Finite Fields, Coding Theory and Advances in Communications and Computing, P131
[7]   Permutation polynomials with exponents in an arithmetic progression [J].
Park, YH ;
Lee, JB .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 57 (02) :243-252
[8]  
RAYES MO, FACTORIZATION CHEBYS
[9]   PERMUTATION POLYNOMIALS OF THE FORM X(R)F(X((Q-1)/D)) AND THEIR GROUP-STRUCTURE [J].
WAN, DQ ;
LIDL, R .
MONATSHEFTE FUR MATHEMATIK, 1991, 112 (02) :149-163
[10]   On permutation polynomials [J].
Wang, LY .
FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (03) :311-322