A relevance feedback method based on genetic programming for classification of remote sensing images

被引:41
作者
dos Santos, J. A. [1 ]
Ferreira, C. D. [1 ]
Torres, R. da S. [1 ]
Goncalves, M. A. [2 ]
Lamparelli, R. A. C. [3 ]
机构
[1] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
[2] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
[3] Univ Estadual Campinas, Agr Res Ctr, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Content-based image retrieval; Region descriptors; Relevance feedback; Genetic programming; Remote sensing image classification; RETRIEVAL; DISCOVERY; FRAMEWORK; REGION;
D O I
10.1016/j.ins.2010.02.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an interactive technique for remote sensing image classification. In our proposal, users are able to interact with the classification system, indicating regions of interest (and those which are not). This feedback information is employed by a genetic programming approach to learning user preferences and combining image region descriptors that encode spectral and texture properties. Experiments demonstrate that the proposed method is effective for image classification tasks and outperforms the traditional MaxVer method. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2671 / 2684
页数:14
相关论文
共 41 条
  • [1] [Anonymous], 2001, ACM MM
  • [2] [Anonymous], 2003, Genetic programming IV: routine human-competitive machine intelligence
  • [3] Back T., 2002, EVOLUTIONARY COMPUTA
  • [4] GP-COACH: Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems
    Berlanga, F. J.
    Rivera, A. J.
    del Jesus, M. J.
    Herrera, F.
    [J]. INFORMATION SCIENCES, 2010, 180 (08) : 1183 - 1200
  • [5] Object detection in multi-modal images using genetic programming
    Bhanu, B
    Lin, YQ
    [J]. APPLIED SOFT COMPUTING, 2004, 4 (02) : 175 - 201
  • [6] Congalton R. G, 1977, ASSESSING ACCURACY R
  • [7] Cord M., 2003, 16 BRAZ S COMP GRAPH
  • [8] The Bayesian image retrieval system, PicHunter:: Theory, implementation, and psychophysical experiments
    Cox, IJ
    Miller, ML
    Minka, TP
    Papathomas, TV
    Yianilos, PN
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (01) : 20 - 37
  • [9] Adaptive relevance feedback based on Bayesian inference for image retrieval
    Duan, LJ
    Gao, W
    Zeng, W
    Zhao, DB
    [J]. SIGNAL PROCESSING, 2005, 85 (02) : 395 - 399
  • [10] A generic ranking function discovery framework by genetic programming for information retrieval
    Fan, WG
    Gordon, MD
    Pathak, P
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2004, 40 (04) : 587 - 602