Semi-Blind Joint Channel and Symbol Estimation in IRS-Assisted Multiuser MIMO Networks

被引:8
|
作者
de Araujo, Gilderlan T. [1 ]
Gomes, Paulo R. B. [1 ]
de Almeida, Andre L. F. [1 ]
Fodor, Gabor [2 ,3 ]
Makki, Behrooz [4 ]
机构
[1] Univ Fed Ceara, Dept Teleinformat, Wireless Telecommun Res Grp GTEL, BR-60020181 Fortaleza, Ceara, Brazil
[2] Ericsson Res, S-16480 Stockholm, Sweden
[3] KTH Royal Inst Technol, Div Decis & Control, S-11428 Stockholm, Sweden
[4] Ericsson, Ericsson Res, S-41756 Gothenburg, Sweden
关键词
Receivers; Tensors; Symbols; MIMO communication; Estimation; Channel estimation; Uplink; intelligent reflecting surface; MIMO system; PARATUCK decomposition; INTELLIGENT; ALGORITHMS; MATRIX;
D O I
10.1109/LWC.2022.3179962
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intelligent reflecting surface (IRS) is a promising technology for beyond of the wireless communications. In fully passive IRS-assisted systems, channel estimation is challenging and should be carried out only at the base station or at the terminals since the elements of the IRS are incapable of processing signals. In this letter, we formulate a tensor-based semi-blind receiver that solves the joint channel and symbol estimation problem in an IRS-assisted multi-user multiple-input multiple-output system. The proposed approach relies on a generalized PARATUCK tensor model of the signals reflected by the IRS, based on a two-stage closed-form semi-blind receiver using Khatri-Rao and Kronecker factorizations. Simulation results demonstrate the superior performance of the proposed semi-blind receiver, in terms of the normalized mean squared error and symbol error rate, as well as a lower computational complexity, compared to recently proposed parallel factor analysis-based receivers.
引用
收藏
页码:1553 / 1557
页数:5
相关论文
共 50 条
  • [1] Semi-Blind Joint Channel and Symbol Estimation for IRS-Assisted MIMO Systems
    de Araujo, Gilderlan T.
    de Almeida, Andre L. F.
    Boyer, Remy
    Fodor, Gabor
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1184 - 1199
  • [2] Semi-Blind Joint Channel Estimation and Symbol Detection for RIS-Empowered Multiuser mmWave Systems
    Du, Jianhe
    Luo, Xin
    Li, Xingwang
    Zhu, Mingfu
    Rabie, Khaled M. M.
    Kara, Ferdi
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 362 - 366
  • [3] Semi-Blind Joint Channel Estimation and Symbol Detection for Multi-RIS Aided MIMO Systems
    Li, Ni
    Xiong, Rujing
    Deng, Yansha
    Xu, Fuxin
    Deng, Honggui
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 586 - 590
  • [4] Semi-blind receiver for two-way MIMO relaying systems based on joint channel and symbol estimation
    Han, Xi
    de Almeida, Andre L. F.
    Liu, An
    Bai, Wenle
    IET COMMUNICATIONS, 2019, 13 (08) : 1090 - 1094
  • [5] Semi-blind maximum-likelihood joint channel/data estimation for correlated channels in multiuser MIMO networks
    Rizogiannis, Constantinos
    Kofidis, Eleftherios
    Papadias, Constantinos B.
    Theodoridis, Sergios
    SIGNAL PROCESSING, 2010, 90 (04) : 1209 - 1224
  • [6] Semi-blind Channel Estimation for Multiuser Massive MIMO Systems
    Nayebi, Elina
    Rao, Bhaskar D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (02) : 540 - 553
  • [7] Semi-Blind Channel Estimation for MIMO Diffusive Molecular Communication
    Darya, Abdollah Masoud
    Abdallah, Saeed
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3277 - 3281
  • [8] Sparse Channel Estimation in IRS-Assisted Massive MIMO Cognitive Radio Systems
    Agarwal, Agrim
    Mishra, Amrita
    Ray, Ashirwad
    Das, Priyanka
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (01) : 200 - 215
  • [9] Channel Estimation and User Localization for IRS-Assisted MIMO-OFDM Systems
    Lin, Yuxing
    Jin, Shi
    Matthaiou, Michail
    You, Xiaohu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (04) : 2320 - 2335
  • [10] Joint Channel Estimation Algorithm for IRS-Assisted Multi-User MIMO Systems
    Fang, Xingchen
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (02) : 367 - 371