A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose

被引:70
|
作者
Wohlert, Jakob [1 ]
Berglund, Lars A. [1 ]
机构
[1] Royal Inst Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden
关键词
CARBOHYDRATE-BINDING MODULE; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; I-BETA CELLULOSE; FORCE-FIELD; CELLOBIOHYDROLASE-I; TRICHODERMA-REESEI; CRYSTAL-STRUCTURE; BIOFUELS; DOMAINS;
D O I
10.1021/ct100489z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have constructed a coarse-grained model of crystalline cellulose to be used in molecular dynamics simulations. Using cellobiose from the recently published MARTINI coarse-grained force field for carbohydrates [Lopez, C. A. et al. J. Chem. Theory Comput. 2009, 5, 3195-3210] as a starting point, we have reparameterized the nonbonded interactions to reproduce the partitioning free energies between water and cyclohexane for a series of cellooligomers, cellobiose through cellopentaose. By extrapolating the model to longer cellooligomers, and by assigning special cellulose cellulose nonbonded interactions, we obtain a model which gives a stable, ordered structure in water that closely resembles the crystal structure of cellulose I beta. Furthermore, the resulting model is compatible with an existing coarse-grained force field for proteins. This is demonstrated by a simulation of the motion of the carbohydrate-binding domain of the fungal cellulase Cel7A from Trichoderma reesei on a crystalline cellulose surface. The diffusion coefficient at room temperature is calculated at D-1 = 3.1 x 10(-11) cm(2) s(-1), which is in good agreement with experimental numbers.
引用
收藏
页码:753 / 760
页数:8
相关论文
共 50 条
  • [1] Secondary Structure Analysis of Native Cellulose by Molecular Dynamics Simulations with Coarse-Grained Model
    Wu, Shuai
    Zhan, Hai-yi
    Wang, Hong-ming
    Ju, Yan
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2012, 25 (02) : 191 - 198
  • [2] A coarse-grained model of the ribosome: Molecular dynamics simulations
    Trylska, J
    Tozzini, V
    McCammon, J
    PROTEIN SCIENCE, 2004, 13 : 121 - 121
  • [3] A computational study of cellulose regeneration: Coarse-grained molecular dynamics simulations
    Pang, Jiu
    Mehandzhiyski, Aleksandar Y.
    Zozoulenko, Igor
    CARBOHYDRATE POLYMERS, 2023, 313
  • [4] Novel Coarse-Grained Model for Molecular Dynamics Simulations of DNA
    Karolak, Aleksandra
    van der Vaart, Arjan
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 804A - 804A
  • [5] Coarse-grained protein molecular dynamics simulations
    Derreumaux, Philippe
    Mousseau, Normand
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (02):
  • [6] Coarse-grained molecular dynamics simulations of biomolecules
    Takahashi, Ken
    Oda, Takayuki
    Naruse, Keiji
    AIMS BIOPHYSICS, 2014, 1 (01): : 1 - 15
  • [7] Coarse-grained molecular dynamics simulations of clay compression
    Bandera, Sara
    O'Sullivan, Catherine
    Tangney, Paul
    Angioletti-Uberti, Stefano
    COMPUTERS AND GEOTECHNICS, 2021, 138 (138)
  • [8] A review of advancements in coarse-grained molecular dynamics simulations
    Joshi, Soumil Y.
    Deshmukh, Sanket A.
    MOLECULAR SIMULATION, 2021, 47 (10-11) : 786 - 803
  • [9] Coarse-Grained Molecular Dynamics Simulations of Pegylated Lipids
    Lee, Hwankyu
    Pastor, Richard W.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 569A - 569A
  • [10] Coarse-grained model of the native cellulose and the transformation pathways to the allomorph
    Poma, Adolfo B.
    Chwastyk, Mateusz
    Cieplak, Marek
    CELLULOSE, 2016, 23 (03) : 1573 - 1591