The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion

被引:253
作者
Caraballo, T. [1 ]
Garrido-Atienza, M. J. [1 ]
Taniguchi, T. [2 ]
机构
[1] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[2] Kurume Univ, Grad Sch Comparat Culture, Div Math Sci, Fukuoka 8398502, Japan
基金
日本学术振兴会;
关键词
Delay stochastic PDEs; Fractional Brownian motion; Exponential decay in mean square; DRIVEN;
D O I
10.1016/j.na.2011.02.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence, uniqueness and exponential asymptotic behavior of mild solutions to stochastic delay evolution equations perturbed by a fractional Brownian motion B-Q(H)(t): dX(t) = (AX(t) + f (t, X-t))dt + g(t)dB(Q)(H)(t), with Hurst parameter H is an element of (1/2, 1). We also consider the existence of weak solutions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3671 / 3684
页数:14
相关论文
共 19 条
  • [1] Stochastic calculus with respect to Gaussian processes
    Alòs, E
    Mazet, O
    Nualart, D
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02) : 766 - 801
  • [2] Boufoussi B., 2009, FUNCTIONAL DIF UNPUB
  • [3] Da Prato G., 1992, STOCHASTIC EQUATIONS, DOI 10.1017/CBO9780511666223
  • [4] Ferrante M, 2006, BERNOULLI, V12, P85
  • [5] Convergence of delay differential equations driven by fractional Brownian motion
    Ferrante, Marco
    Rovira, Carles
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (04) : 761 - 783
  • [6] RANDOM ATTRACTORS FOR STOCHASTIC EQUATIONS DRIVEN BY A FRACTIONAL BROWNIAN MOTION
    Garrido-Atienza, M. J.
    Maslowski, B.
    Schmalfuss, B.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09): : 2761 - 2782
  • [7] RANDOM DYNAMICAL SYSTEMS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS DRIVEN BY A FRACTIONAL BROWNIAN MOTION
    Garrido-Atienza, Maria J.
    Lu, Kening
    Schmalfuss, Bjoern
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (02): : 473 - 493
  • [8] A parabolic stochastic differential equation with fractional Brownian motion input
    Grecksch, W
    Anh, VV
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 41 (04) : 337 - 346
  • [9] Young integrals and SPDEs
    Gubinelli, Massimiliano
    Lejay, Antoine
    Tindel, Samy
    [J]. POTENTIAL ANALYSIS, 2006, 25 (04) : 307 - 326
  • [10] Hale JK., 1995, Introduction to Functional Differential Equations