A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries

被引:171
作者
Kasnatscheew, Johannes [1 ,2 ]
Placke, Tobias [1 ]
Streipert, Benjamin [1 ]
Rothermel, Sergej [1 ,3 ]
Wagner, Ralf [1 ]
Meister, Paul [1 ]
Laskovic, Isidora Cekic [1 ,2 ]
Winter, Martin [1 ,2 ]
机构
[1] Univ Munster, Inst Phys Chem, MEET Battery Res Ctr, D-48149 Munster, Germany
[2] Forschungszentrum Julich, IEK 12, Helmholtz Inst Munster HI MS, D-48149 Munster, Germany
[3] Rhein Westfal TH Aachen, Chair Prod Engn E Mobil Components PEM, D-52074 Aachen, Germany
关键词
PLANE SURFACE-AREA; ANODE PERFORMANCE; BASAL-PLANE; CATHODE; ELECTROLYTES; ELECTRODES; CELLS; MECHANISMS; ADDITIVES; CARBONATE;
D O I
10.1149/2.0961712jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In a lithium ion battery, balancing of active materials is an essential requirement with respect to safety and cycle life. However, capacity oversizing of negative electrodes is associated with decrease of specific energy/energy density. In this work, the required trade-off between maximized specific energy and minimized risk of lithium plating is thoroughly investigated by evaluating underlying potential/voltage curves. The adjustment of targeted state of charge (SOC) for both, positive and the negative electrode, can be achieved by intentional selection of only two parameters: negative/positive electrode active mass ratio and charge cutoff voltage. For investigation and controlling reasons, specific charge capacity reveals to be a simple but effective tool to indirectly predict electrode potentials. While cell kinetics/overvoltage are influenced by both electrodes, specific capacity losses are affected by a single electrode. The latter only correlate with negative electrode's BET surface area as long as specific capacity losses of negative electrodes are higher compared to positive electrodes. Based on these insights, a more systematic performance and safety optimized handling of the trade-off between specific energy and safety risk can be realized. (C) 2017 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A2479 / A2486
页数:8
相关论文
共 50 条
[1]   Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods [J].
Amereller, M. ;
Schedlbauer, T. ;
Moosbauer, D. ;
Schreiner, C. ;
Stock, C. ;
Wudy, F. ;
Zugmann, S. ;
Hammer, H. ;
Maurer, A. ;
Gschwind, R. M. ;
Wiemhoefer, H. -D. ;
Winter, M. ;
Gores, H. J. .
PROGRESS IN SOLID STATE CHEMISTRY, 2014, 42 (04) :39-56
[2]   Future generations of cathode materials: an automotive industry perspective [J].
Andre, Dave ;
Kim, Sung-Jin ;
Lamp, Peter ;
Lux, Simon Franz ;
Maglia, Filippo ;
Paschos, Odysseas ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6709-6732
[3]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[4]   Rechargeable Batteries: Grasping for the Limits of Chemistry [J].
Berg, Erik J. ;
Villevieille, Claire ;
Streich, Daniel ;
Trabesinger, Sigita ;
Novak, Petr .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2468-A2475
[5]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[6]   High Energy Accumulators Lithium-Ion-Technology and what might come next [J].
Bieker, Peter ;
Winter, Martin .
CHEMIE IN UNSERER ZEIT, 2016, 50 (03) :172-186
[7]   High Energy Batteries What you need for a Super-Battery? [J].
Bieker, Peter ;
Winter, Martin .
CHEMIE IN UNSERER ZEIT, 2016, 50 (01) :26-33
[8]   Negative Electrodes in Rechargeable Lithium Ion Batteries - Influence of Graphite Surface Modification on the Formation of the Solid Electrolyte Interphase [J].
Buqa, H. ;
Blyth, R. I. R. ;
Golob, P. ;
Evers, B. ;
Schneider, I. ;
Alvarez, M. V. Santis ;
Hofer, F. ;
Netzer, F. P. ;
Ramsey, M. G. ;
Winter, M. ;
Besenhard, J. O. .
IONICS, 2000, 6 (3-4) :172-179
[9]   Next-generation lithium-ion batteries: The promise of near-term advancements [J].
Croy, Jason R. ;
Abouimrane, Ali ;
Zhang, Zhengcheng .
MRS BULLETIN, 2014, 39 (05) :407-415
[10]   Quantifying the promise of lithium-air batteries for electric vehicles [J].
Gallagher, Kevin G. ;
Goebel, Steven ;
Greszler, Thomas ;
Mathias, Mark ;
Oelerich, Wolfgang ;
Eroglu, Damla ;
Srinivasan, Venkat .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1555-1563