The fuzzy fractional acoustic waves model in terms of the Caputo-Fabrizio operator

被引:8
作者
Iqbal, Naveed [1 ]
Khan, Imran [2 ]
Shah, Rasool [3 ]
Nonlaopon, Kamsing [4 ]
机构
[1] Univ Hail, Coll Sci, Dept Math, Hail 2440, Saudi Arabia
[2] Bacha Khan Univ Charsadda, Dept Math & Stat, Charsadda 24420, Pakistan
[3] Abdul Wali Khan Univ Mardan, Dept Math, Mardan, Pakistan
[4] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
AIMS MATHEMATICS | 2022年 / 8卷 / 01期
关键词
iterative transform method; Caputo-Fabrizio operator; fuzzy fractional acoustic waves equation; approximate solution; PARTIAL-DIFFERENTIAL-EQUATIONS; KERNEL; ALGORITHM;
D O I
10.3934/math.2023091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes an analytical solution for a fractional fuzzy acoustic wave equation. Under the fractional Caputo-Fabrizio operator, we use the Laplace transformation and the iterative technique. In the present study, the achieved series type result was determined, and we approximated the estimated values of the suggested models. All three problems used two various fractional-order simulations between 0 and 1 to obtain the upper and lower portions of the fuzzy results. Since the exponential function is present, the fractional operator is non-singular and global. Due to its dynamic behaviors, it provides all fuzzy form solutions that happen between 0 and 1 at any level of fractional order. Because the fuzzy numbers return the solution in a fuzzy shape with upper and lower branches, the unknown quantity likewise incorporates fuzziness.
引用
收藏
页码:1770 / 1783
页数:14
相关论文
共 40 条
[1]   A survey on fuzzy fractional differential and optimal control nonlocal evolution equations [J].
Agarwal, Ravi P. ;
Baleanu, Dumitru ;
Nieto, Juan J. ;
Torres, Delfim F. M. ;
Zhou, Yong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 :3-29
[2]   Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions [J].
Al-Qurashi, Maysaa ;
Shagari, Mohammed Shehu ;
Rashid, Saima ;
Hamed, Y. S. ;
Mohamed, Mohamed S. .
AIMS MATHEMATICS, 2022, 7 (01) :315-333
[3]   Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm [J].
Al-Sawalha, M. Mossa ;
Alshehry, Azzh Saad ;
Nonlaopon, Kamsing ;
Shah, Rasool ;
Ababneh, Osama Y. .
AIMS MATHEMATICS, 2022, 7 (11) :19739-19757
[4]   Fractional view analysis of Kersten-Krasil?shchik coupled KdV-mKdV systems with non-singular kernel derivatives [J].
Al-Sawalha, M. Mossa ;
Shah, Rasool ;
Khan, Adnan ;
Ababneh, Osama Y. ;
Botmart, Thongchai .
AIMS MATHEMATICS, 2022, 7 (10) :18334-18359
[5]   Fractional Series Solution Construction for Nonlinear Fractional Reaction-Diffusion Brusselator Model Utilizing Laplace Residual Power Series [J].
Alderremy, Aisha Abdullah ;
Shah, Rasool ;
Iqbal, Naveed ;
Aly, Shaban ;
Nonlaopon, Kamsing .
SYMMETRY-BASEL, 2022, 14 (09)
[6]   Novel Investigation of Fractional-Order Cauchy-Reaction Diffusion Equation Involving Caputo-Fabrizio Operator [J].
Alesemi, Meshari ;
Iqbal, Naveed ;
Abdo, Mohammed S. .
JOURNAL OF FUNCTION SPACES, 2022, 2022
[7]   A full fuzzy method for solving differential equation based on Taylor expansion [J].
Allahviranloo, T. ;
Gouyandeh, Z. ;
Armand, A. .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (03) :1039-1055
[8]  
Allahviranloo T., 2021, FUZZY FRACTIONAL DIF
[9]   On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach [J].
Allahviranloo, Tofigh ;
Ghanbari, Behzad .
CHAOS SOLITONS & FRACTALS, 2020, 130
[10]   A novel formulation of the fuzzy hybrid transform for dealing nonlinear partial differential equations via fuzzy fractional derivative involving general order [J].
Alqurashi, M. S. ;
Rashid, Saima ;
Kanwal, Bushra ;
Jarad, Fahd ;
Elagan, S. K. .
AIMS MATHEMATICS, 2022, 7 (08) :14946-14974