A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization

被引:53
作者
Gore, Sonal [1 ]
Chougule, Tanay [3 ]
Jagtap, Jayant [1 ]
Saini, Jitender [2 ]
Ingalhalikar, Madhura [3 ]
机构
[1] Symbiosis Int Univ, Dept Elect & Telecommun, Symbiosis Inst Technol, Pune, Maharashtra, India
[2] Natl Inst Mental Hlth & Neurosci, Dept Radiol, Bengaluru, India
[3] Symbiosis Int Univ, Symbiosis Ctr Med Image Anal, Pune, Maharashtra, India
关键词
Glioma; Biomarkers; Machine Learning; Deep Learning; Radiogenomics; Radiomics; TERT PROMOTER MUTATIONS; LOWER-GRADE GLIOMAS; 1P/19Q CO-DELETION; IDH MUTATION; MRI FEATURES; 1P/19Q-CODELETION STATUS; GENETIC ALTERATIONS; MOLECULAR SUBTYPE; MGMT METHYLATION; ATRX MUTATION;
D O I
10.1016/j.acra.2020.06.016
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived handcrafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.
引用
收藏
页码:1599 / 1621
页数:23
相关论文
共 155 条
[51]   Radiomic model for predicting mutations in the isocitrate dehydrogenase gene in glioblastomas [J].
Hsieh, Kevin Li-Chun ;
Chen, Cheng-Yu ;
Lo, Chung-Ming .
ONCOTARGET, 2017, 8 (28) :45888-45897
[52]   Role of chromosomal 1p/19q co-deletion on the prognosis of oligodendrogliomas: A systematic review and meta-analysis [J].
Hu, Nan ;
Richards, Rachel ;
Jensen, Randy .
INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT, 2016, 5 :58-63
[53]   Isocitrate Dehydrogenase Mutations in Glioma: From Basic Discovery to Therapeutics Development [J].
Huang, Juan ;
Yu, Jialong ;
Tu, Lin ;
Huang, Nanqu ;
Li, Hang ;
Luo, Yong .
FRONTIERS IN ONCOLOGY, 2019, 9
[54]   Two types of chromosome 1p losses with opposite significance in gliomas [J].
Idbaih, A ;
Marie, Y ;
Pierron, G ;
Brennetot, C ;
Khê, HX ;
Kujas, M ;
Mokhtari, K ;
Sanson, M ;
Lejeune, J ;
Aurias, A ;
Delattre, O ;
Delattre, JY .
ANNALS OF NEUROLOGY, 2005, 58 (03) :483-487
[55]  
Ingalhalikar M., 2019, INT WORKSHOP RADIOMI, P53
[56]  
Ismail A.A.O., 2018, INT MICCAI BRAINLESI, P123
[57]  
Jagtap J., 2019, P 2 INT C DAT ENG CO, P65
[58]   Quantitative texture analysis in the prediction of IDH status in low-grade gliomas [J].
Jakola, Asgeir Store ;
Zhang, Yi-Hua ;
Skjulsvik, Anne J. ;
Solheim, Ole ;
Bo, Hans Kristian ;
Berntsen, Erik Magnus ;
Reinertsen, Ingerid ;
Gulati, Sasha ;
Forander, Petter ;
Brismard, Torkel B. .
CLINICAL NEUROLOGY AND NEUROSURGERY, 2018, 164 :114-120
[59]   Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI [J].
Jiang, Shanshan ;
Zou, Tianyu ;
Eberhart, Charles G. ;
Villalobos, Maria A. V. ;
Heo, Hye-Young ;
Zhang, Yi ;
Wang, Yu ;
Wang, Xianlong ;
Yu, Hao ;
Du, Yongxing ;
van Zijl, Peter C. M. ;
Wen, Zhibo ;
Zhou, Jinyuan .
MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (03) :1100-1109
[60]   Isocitrate Dehydrogenase Mutations in Low-Grade Gliomas Correlate With Prolonged Overall Survival in Older Patients [J].
Jones, Pamela S. ;
Carroll, Kate T. ;
Koch, Matthew ;
DiCesare, Jasmine A. T. ;
Reitz, Kara ;
Frosch, Matthew ;
Barker, Fred G., II ;
Cahill, Daniel P. ;
Curry, William T., Jr. .
NEUROSURGERY, 2019, 84 (02) :519-527