A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization

被引:53
作者
Gore, Sonal [1 ]
Chougule, Tanay [3 ]
Jagtap, Jayant [1 ]
Saini, Jitender [2 ]
Ingalhalikar, Madhura [3 ]
机构
[1] Symbiosis Int Univ, Dept Elect & Telecommun, Symbiosis Inst Technol, Pune, Maharashtra, India
[2] Natl Inst Mental Hlth & Neurosci, Dept Radiol, Bengaluru, India
[3] Symbiosis Int Univ, Symbiosis Ctr Med Image Anal, Pune, Maharashtra, India
关键词
Glioma; Biomarkers; Machine Learning; Deep Learning; Radiogenomics; Radiomics; TERT PROMOTER MUTATIONS; LOWER-GRADE GLIOMAS; 1P/19Q CO-DELETION; IDH MUTATION; MRI FEATURES; 1P/19Q-CODELETION STATUS; GENETIC ALTERATIONS; MOLECULAR SUBTYPE; MGMT METHYLATION; ATRX MUTATION;
D O I
10.1016/j.acra.2020.06.016
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived handcrafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.
引用
收藏
页码:1599 / 1621
页数:23
相关论文
共 155 条
[1]  
Abhishek K., ARXIV PREPRINT ARXIV
[2]   Magnetic resonance imaging characteristics predict epidermal growth factor receptor amplification status in glioblastoma [J].
Aghi, M ;
Gaviani, P ;
Henson, JW ;
Batchelor, TT ;
Louis, DN ;
Barker, FG .
CLINICAL CANCER RESEARCH, 2005, 11 (24) :8600-8605
[3]  
Ahmad A, 2019, I S BIOMED IMAGING, P372, DOI [10.1109/ISBI.2019.8759313, 10.1109/isbi.2019.8759313]
[4]   In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature [J].
Akbari, Named ;
Bakas, Spyridon ;
Pisapia, Jared M. ;
Nasrallah, MacLean P. ;
Rozycki, Martin ;
Martinez-Lage, Maria ;
Morrissette, Jennifer J. D. ;
Bilello, Michel ;
Dahmane, Nadia ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEURO-ONCOLOGY, 2018, 20 (08) :1068-1079
[5]   Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence [J].
Akkus, Zeynettin ;
Ali, Issa ;
Sedlar, Jiri ;
Agrawal, Jay P. ;
Parney, Ian F. ;
Giannini, Caterina ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :469-476
[6]   Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas [J].
Arita, Hideyuki ;
Kinoshita, Manabu ;
Kawaguchi, Atsushi ;
Takahashi, Masamichi ;
Narita, Yoshitaka ;
Terakawa, Yuzo ;
Tsuyuguchi, Naohiro ;
Okita, Yoshiko ;
Nonaka, Masahiro ;
Moriuchi, Shusuke ;
Takagaki, Masatoshi ;
Fujimoto, Yasunori ;
Fukai, Junya ;
Izumoto, Shuichi ;
Ishibashi, Kenichi ;
Nakajima, Yoshikazu ;
Shofuda, Tomoko ;
Kanematsu, Daisuke ;
Yoshioka, Ema ;
Kodama, Yoshinori ;
Mano, Masayuki ;
Mori, Kanji ;
Ichimura, Koichi ;
Kanemura, Yonehiro .
SCIENTIFIC REPORTS, 2018, 8
[7]   Molecular and cellular heterogeneity: the hallmark of glioblastoma [J].
Aum, Diane J. ;
Kim, David H. ;
Beaumont, Thomas L. ;
Leuthardt, Eric C. ;
Dunn, Gavin P. ;
Kim, Albert H. .
NEUROSURGICAL FOCUS, 2014, 37 (06)
[8]   Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction [J].
Bae, Sohi ;
Choi, Yoon Seong ;
Ahn, Sung Soo ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Eui Hyun ;
Kim, Se Hoon ;
Lee, Seung-Koo .
RADIOLOGY, 2018, 289 (03) :797-806
[9]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[10]  
BANERJEE S, 2019, DEEP RADIOMICS BRAIN