Structure of singular sets of some classes of subharmonic functions

被引:2
作者
Abdullaev, B., I [1 ]
Imomkulov, S. A. [2 ]
Sharipov, R. A. [3 ]
机构
[1] Urgench State Univ, Phys & Math, Dept Math Anal, Ul H Alimjan 14, Urgench 220100, Uzbekistan
[2] Acad Sci Uzbek, Inst Math, Ul Khodjaev 29, Tashkent 100060, Uzbekistan
[3] Urgench State Univ, Dept Math Anal, Ul H Alimjan 14, Urgench 220100, Uzbekistan
来源
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI | 2021年 / 31卷 / 04期
关键词
subharmonic functions; m-subharmonic functions; strongly m-subharmonic functions; alpha-sub-harmonic functions; Borel measure; C-q; C-s-capacity; polar set; COMPLEX HESSIAN EQUATIONS; REMOVABLE SINGULARITIES; POSITIVE LENGTH;
D O I
10.35634/vm210401
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we survey the recent results on removable singular sets for the classes of m-subharmonic (m - sh) and strongly m-subharmonic (sh(m)), as well as alpha-subharmonic functions, which are applied to study the singular sets of sh(m) functions. In particular, for strongly rn-subharmonic functions from the class L-loc(p) it is proved that a set is a removable singular set if it has zero C-q,C-s -capacity. The proof of this statement is based on the fact that the space of basic functions, supported on the set D\E, is dense in the space of test functions defined in the set D on the L-q(s)-norm. Similar results in the case of classical (sub)harmonic functions were studied in the works by L. Carleson, E. Dolzhenko, M. Blanchet, S. Gardiner, J. Riihentaus, V. Shapiro, A. Sadullaev and Zh. Yarmetov, B. Abdullaev and S. Imomkulov.
引用
收藏
页码:519 / 535
页数:17
相关论文
共 60 条
  • [1] Abdullaev B. I., 1997, UZBEKSKII MATEMATICH, P10
  • [2] Abdullaev B. I., 2018, REMOVABLE SINGULAR S, P1, DOI [10.1007/978- 3-030- 01144- 4_1, DOI 10.1007/978-3-030-01144-4_1]
  • [3] Abdullaev B. I., 2006, VESTNIK KRASNOYARSKO, P74
  • [4] Abdullaev B.I., 2013, MATH PHYS, V6, P409
  • [5] Abdullaev B. I, 2012, DOKL AKAD NAUK RESP, P15
  • [6] On a characterization of m-subharmonic functions with weak singularities
    Ahag, Per
    Czyz, Rafal
    [J]. ANNALES POLONICI MATHEMATICI, 2019, 123 (01) : 21 - 29
  • [7] The Geometry of m-Hyperconvex Domains
    Ahag, Per
    Czyz, Rafal
    Hed, Lisa
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (04) : 3196 - 3222
  • [8] Extension and approximation of m-subharmonic functions
    Ahag, Per
    Czyz, Rafal
    Hed, Lisa
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (06) : 783 - 801
  • [9] [Anonymous], 1967, Selected problems on exceptional sets
  • [10] Blanchet P., 1995, COMPLEX VARIABLES TH, V26, P311, DOI [10.1080/17476939508814792, DOI 10.1080/17476939508814792]