On the free surface boundary of moving particle semi-implicit method for thermocapillary flow

被引:6
|
作者
Wang, Zidi [1 ]
Sugiyama, Tomoyuki [1 ]
机构
[1] Japan Atom Energy Agcy, Nucl Safety Res Ctr, 2-4 Shirakata, Tokai, Ibaraki 3191195, Japan
关键词
Free surface boundary; Marangoni boundary condition; Thermocapillary flow; Buoyancy-marangoni convection; MPS method; Meshfree particle method; MARANGONI CONVECTION; INCOMPRESSIBLE-FLOW; FLOODING ANALYSIS; MPS METHOD; HYDRODYNAMICS; SIMULATION; CONSERVATION; STABILITY; ALGORITHM; ACCURATE;
D O I
10.1016/j.enganabound.2021.11.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The moving particle semi-implicit (MPS) method has great potential in dealing with free surface flow due to its Lagrangian nature. In most cases, the free surface boundary is simply served as the pressure boundary condition. In this paper, an improved MPS method is presented for thermocapillary driven free surface flow. A series of surface nodes explicitly represent the free surface boundary. The normal stress on the free surface provides the Dirichlet pressure boundary condition, while the velocity boundary condition, i.e., Marangoni stress, is enforced through the Taylor series expansion and least squares method. Meanwhile, a quasi-Lagrangian formulation is introduced to avoid particle clustering and the corresponding numerical instability by slightly modifying the advection velocity. The upwind scheme is employed for the convection term to obtain accurate and stable results. A novel constraint scheme with the divergence of provisional velocity is developed for the pressure gradient to enhance stability further. The consistency of the derived generalized boundary condition is firstly verified with a simple convergence test. Then, several numerical tests, including square patch rotation, lid-driven and square droplet oscillation, are simulated to show the improvements. Finally, thermocapillary driven flows in an open cavity without and with buoyancy effect are studied. Good agreements are obtained by comparing with reference simulations taken from literature. Heat transfer characteristics are further investigated for different dimensionless numbers, including the Rayleigh number and Marangoni number. PE-FRONTEND
引用
收藏
页码:266 / 283
页数:18
相关论文
共 50 条
  • [21] An advanced moving particle semi-implicit method for accurate and stable simulation of incompressible flows
    Liu, Xiaoxing
    Morita, Koji
    Zhang, Shuai
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 339 : 467 - 487
  • [22] Stable mesh-free moving particle semi-implicit method for direct analysis of gas-liquid two-phase flow
    Natsui, Shungo
    Takai, Hifumi
    Kumagai, Takehiko
    Kikuchi, Tatsuya
    Suzuki, Ryosuke O.
    CHEMICAL ENGINEERING SCIENCE, 2014, 111 : 286 - 298
  • [23] Improved pressure calculation for the moving particle semi-implicit method
    Kazuya Shibata
    Issei Masaie
    Masahiro Kondo
    Kohei Murotani
    Seiichi Koshizuka
    Computational Particle Mechanics, 2015, 2 : 91 - 108
  • [24] GPU-acceleration for Moving Particle Semi-Implicit method
    Hori, Chiemi
    Gotoh, Hitoshi
    Ikari, Hiroyuki
    Khayyer, Abbas
    COMPUTERS & FLUIDS, 2011, 51 (01) : 174 - 183
  • [25] A Performance Study of Moving Particle Semi-Implicit Method for Incompressible Fluid Flow on GPU
    Kataraki, Kirankumar V.
    Chickerur, Satyadhyan
    INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES, 2020, 11 (01) : 83 - 94
  • [26] Improved pressure calculation for the moving particle semi-implicit method
    Shibata, Kazuya
    Masaie, Issei
    Kondo, Masahiro
    Murotani, Kohei
    Koshizuka, Seiichi
    COMPUTATIONAL PARTICLE MECHANICS, 2015, 2 (01) : 91 - 108
  • [27] An enhanced semi-implicit particle method for simulating the flow of droplets with free surfaces
    Duan, Guangtao
    Sakai, Mikio
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
  • [28] The truncation and stabilization error in multiphase moving particle semi-implicit method based on corrective matrix: Which is dominant?
    Duan, Guangtao
    Yamaji, Akifumi
    Koshizuka, Seiichi
    Chen, Bin
    COMPUTERS & FLUIDS, 2019, 190 : 254 - 273
  • [29] Improvement of moving particle semi-implicit method for simulation of progressive water waves
    Wang, Lizhu
    Jiang, Qin
    Zhang, Changkuan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 85 (02) : 69 - 89
  • [30] Improvement of stability in moving particle semi-implicit method
    Kondo, Masahiro
    Koshizuka, Seiichi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (06) : 638 - 654