Incomparable families and maximal trees

被引:4
作者
Campero-Arena, G. [1 ]
Cancino, J. [2 ]
Hrusak, M. [3 ]
Miranda-Perea, F. E. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Ciudad Univ, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, AP 61-3, Morelia, Michoacan, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient, Ciudad Univ, Mexico City 04510, DF, Mexico
关键词
Boolean algebra; antichain; incomparable family; tree; cardinal invariant; ALMOST-DISJOINT FAMILIES; BOOLEAN-ALGEBRAS; ANTICHAINS; CHAINS;
D O I
10.4064/fm125-1-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer several questions of D. Monk by showing that every maximal family of pairwise incomparable elements of P(omega)/fin has size continuum, while it is consistent with the negation of the Continuum Hypothesis that there are maximal subtrees of both P(omega) and P(omega)/fin of size omega(1).
引用
收藏
页码:73 / 89
页数:17
相关论文
共 20 条
[1]   Combinatorics of dense subsets of the rationals [J].
Balcar, B ;
Hernández-Hernández, F ;
Hrusák, M .
FUNDAMENTA MATHEMATICAE, 2004, 183 (01) :59-80
[2]   CHAINS AND ANTICHAINS IN P(OMEGA) [J].
BAUMGARTNER, JE .
JOURNAL OF SYMBOLIC LOGIC, 1980, 45 (01) :85-92
[3]  
Blass A., 2010, HDB SET THEORY, P395, DOI [10.1007/978-1-4020-5764-9_7, DOI 10.1007/978-1-4020-5764-9_7]
[4]   NARROW BOOLEAN-ALGEBRAS [J].
BONNET, R ;
SHELAH, S .
ANNALS OF PURE AND APPLIED LOGIC, 1985, 28 (01) :1-12
[5]   SELF-DUAL UNIFORM MATROIDS ON INFINITE SETS [J].
Bowler, Nathan ;
Geschke, Stefan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) :459-471
[6]  
BRENDLE J, 2000, QUESTIONS ANSWERS GE, V18, P123
[7]  
Cancino J., 2013, IRREDUNDANT GENERATO
[8]   SEPARABILITY PROPERTIES OF ALMOST-DISJOINT FAMILIES OF SETS [J].
ERDOS, P ;
SHELAH, S .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 12 (02) :207-&
[9]   CLASSIFYING ALMOST-DISJOINT FAMILIES WITH APPLICATIONS TO BETAN - N [J].
HECHLER, SH .
ISRAEL JOURNAL OF MATHEMATICS, 1971, 10 (04) :413-&
[10]   Cardinal invariants of analytic P-ideals [J].
Hernandez-Hernandez, Fernando ;
Hrusak, Michael .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (03) :575-595