On a conjecture of Rudin on squares in arithmetic progressions

被引:5
作者
Gonzalez-Jimenez, Enrique [1 ,2 ]
Xarles, Xavier [3 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[2] Inst Ciencias Matemat ICMat, Madrid, Spain
[3] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Catalonia, Spain
关键词
RATIONAL-POINTS; ALGEBRAIC-CURVES; ELLIPTIC-CURVES; CHABAUTY; NUMBER; FIELDS;
D O I
10.1112/S1461157013000259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q(N;q, a) be the number of squares in the arithmetic progression qn + a, for n = 0, 1,..., N - 1, and let Q(N) be the maximum of Q(N;q, a) over all non-trivial arithmetic progressions qn + a. Rudin's conjecture claims that Q(N) = O(root N), and in its stronger form that Q(N) = Q(N;24, 1) if N >= 6. We prove the conjecture above for 6 <= N <= 52. We even prove that the arithmetic progression 24n + 1 is the only one, up to equivalence, that contains Q(N) squares for the values of N such that Q(N) increases, for 7 <= N <= 52 (N = 8, 13, 16, 23, 27, 36, 41 and 52).
引用
收藏
页码:58 / 76
页数:19
相关论文
共 28 条
[1]  
[Anonymous], 1975, LECT NOTES MATH
[2]  
Bombieri E., 2002, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei. Matematica e Applicazioni, V13, P69
[3]  
Bombieri E., 1992, DUKE MATH J, V66
[4]  
Bruin N, 2003, J REINE ANGEW MATH, V562, P27
[5]   TWO-COVER DESCENT ON HYPERELLIPTIC CURVES [J].
Bruin, Nils ;
Stoll, Michael .
MATHEMATICS OF COMPUTATION, 2009, 78 (268) :2347-2370
[6]   Uniformity of rational points [J].
Caporaso, L ;
Harris, J ;
Mazur, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (01) :1-35
[7]  
Chabauty C, 1941, CR HEBD ACAD SCI, V212, P882
[8]  
Chevallev C, 1932, CR HEBD ACAD SCI, V195, P570
[9]   EFFECTIVE CHABAUTY [J].
COLEMAN, RF .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (03) :765-770
[10]  
COOMBES KR, 1989, J LOND MATH SOC, V40, P385