Monitoring the spatiotemporal dynamics of surface water body of the Xiaolangdi Reservoir using Landsat-5/7/8 imagery and Google Earth Engine

被引:8
作者
Wang, Ruimeng [1 ]
Pan, Li [1 ]
Niu, Wenhui [1 ]
Li, Rumeng [1 ]
Zhao, Xiaoyang [1 ]
Bian, Xiqing [1 ]
Yu, Chong [1 ]
Xia, Haoming [1 ,2 ,3 ,4 ,5 ]
Chen, Taizheng [1 ]
机构
[1] Henan Univ, Coll Geog & Environm Sci, Kaifeng 475004, Peoples R China
[2] Henan Univ, Henan Key Lab Earth Syst Observat & Modeling, Kaifeng 475004, Peoples R China
[3] Henan Univ, Key Lab Geospatial Technol Middle & Lower Yellow, Minist Educ, Kaifeng 475004, Peoples R China
[4] Henan Univ, Key Res Inst Yellow River Civilizat & Sustainable, Kaifeng 475004, Peoples R China
[5] Henan Univ, Collaborat Innovat Ctr Yellow River Civilizat Joi, Kaifeng 475004, Peoples R China
来源
OPEN GEOSCIENCES | 2021年 / 13卷 / 01期
关键词
Landsat imagery; Google Earth Engine; water body extraction; spatiotemporal change; Xiaolangdi Reservoir; LOWER YELLOW-RIVER; AREA; WETLAND; CLASSIFICATION; OPERATION; PROJECTS;
D O I
10.1515/geo-2020-0305
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Xiaolangdi Reservoir is a key control project to control the water and sediment in the lower Yellow River, and a timely and accurate grasp of the reservoir's water storage status is essential for the function of the reservoir. This study used all available Landsat images (789 scenes) and adopted the modified normalized difference water index, enhanced vegetation index, and normalized dif-ference vegetation index to map the surface water from 1999 to 2019 in Google Earth Engine (GEE) cloud plat-form. The spatiotemporal characteristics of the surface water body area changes in the Xiaolangdi Reservoir in the past 21 years are analyzed from the water body type division, area change, type conversion, and the driving force of the Xiaolangdi water body area changes was analyzed. The results showed that (1) the overall accuracy of the water body extraction method was 98.86%, and the kappa coefficient was 0.96; (2) the maximum water body area of the Xiaolangdi Reservoir varies greatly between inter-annual and intra-annual, and seasonal water body and permanent water body have uneven spatiotemporal distribution; (3) in the conversion of water body types, the increased seasonal water body area of the Xiaolangdi Reservoir from 1999 to 2019 was mainly formed by the conversion of permanent water body, and the reduced permanent water body area was mainly caused by non-water conversion; and (4) the change of the water body area of the Xiaolangdi Reservoir has a weak negative correlation with natural factors such as precipitation and temperature, and population. It is positively corre-lated with seven indicators such as runoff and regional gross domestic product (GDP). The findings of the research will provide necessary data support for the management and planning of soil and water resources in the Xiaolangdi Reservoir.
引用
收藏
页码:1290 / 1302
页数:13
相关论文
共 44 条
  • [41] Improved Mapping of Long-Term Forest Disturbance and Recovery Dynamics in the Subtropical China Using All Available Landsat Time-Series Imagery on Google Earth Engine Platform
    Hua, Jianwen
    Chen, Guangsheng
    Yu, Lin
    Ye, Qing
    Jiao, Hongbo
    Luo, Xifang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2754 - 2768
  • [42] GISD30: global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform
    Zhang, Xiao
    Liu, Liangyun
    Zhao, Tingting
    Gao, Yuan
    Chen, Xidong
    Mi, Jun
    EARTH SYSTEM SCIENCE DATA, 2022, 14 (04) : 1831 - 1856
  • [43] High-accuracy continuous mapping of surface water dynamics using automatic update of training samples and temporal consistency modification based on Google Earth Engine: A case study from Huizhou, China
    Li, Kewei
    Xu, Erqi
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 179 : 66 - 80
  • [44] Spatio-Temporal Evolution of Olive Tree Water Status Using Land Surface Temperature and Vegetation Indices Derived from Landsat 5 and 8 Satellite Imagery in Southern Peru
    Quille-Mamani, Javier Alvaro
    Huayna, German
    Pino-Vargas, Edwin
    Chucuya-Mamani, Samuel
    Vera-Barrios, Bertha
    Ramos-Fernandez, Lia
    Espinoza-Molina, Jorge
    Cabrera-Olivera, Fredy
    AGRICULTURE-BASEL, 2024, 14 (05):