Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS

被引:14
|
作者
El Hadri, Hind [1 ,3 ]
Petersen, Elijah J. [2 ]
Winchester, Michael R. [1 ]
机构
[1] NIST, Div Chem Sci, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA
[2] NIST, Biosyst & Biomat Div, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA
[3] NIST, Mat Measurement Sci Div, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA
关键词
Drift correction; Gold nanoparticles; Instrument sensitivity drift; Internal standard; Single-particle ICP-MS; PLASMA-MASS SPECTROMETRY; COLLOID ANALYSIS; SILVER; QUANTIFICATION; CAPABILITIES; EFFICIENCY; TOXICITY; RELEASE;
D O I
10.1007/s00216-016-9397-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The effect of ICP-MS instrument sensitivity drift on the accuracy of nanoparticle (NP) size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 and 60 nm gold nanoparticles.
引用
收藏
页码:5099 / 5108
页数:10
相关论文
共 50 条
  • [42] Single-Particle ICP-MS/MS Application for Routine Screening of Nanoparticles Present in Powder-Based Facial Cosmetics
    Hebert, Deja
    Nelson, Jenny
    Diehl, Brooke N.
    Zito, Phoebe
    NANOMATERIALS, 2023, 13 (19)
  • [43] Characterization of Upconversion Nanoparticles by Single-Particle ICP-MS Employing a Quadrupole Mass Filter with Increased Bandpass
    Meyer, Sarah
    de Vega, Raquel Gonzalez
    Xu, Xiaoxue
    Du, Ziqing
    Doble, Philip A.
    Clases, David
    ANALYTICAL CHEMISTRY, 2020, 92 (22) : 15007 - 15016
  • [44] Single-particle ICP-MS methods development for nanoparticles monitoring and application in drinking water treatment system
    Shi, Honglan
    Dan, Yongbo
    Liang, Xinhua
    Stephan, Chady
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [45] Application of Single-Particle ICP-MS to Determine the Mass Distribution and Number Concentrations of Environmental Nanoparticles and Colloids
    Mansor, Muammar
    Drabesch, Soeren
    Bayer, Timm
    Van Le, Anh
    Chauhan, Ankita
    Schmidtmann, Johanna
    Peiffer, Stefan
    Kappler, Andreas
    ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2021, 8 (07): : 589 - 595
  • [46] Release of TiO2 nanoparticles from painted surfaces in cold climates: characterization using a high sensitivity single-particle ICP-MS
    Azimzada, Agil
    Farner, Jeffrey M.
    Hadioui, Madjid
    Liu-Kang, Carolyn
    Jreije, Ibrahim
    Tufenkji, Nathalie
    Wilkinson, Kevin J.
    ENVIRONMENTAL SCIENCE-NANO, 2020, 7 (01) : 139 - 148
  • [47] Investigation of internal standard use for short-term drift correction in ICP-MS/MS
    Braysher, Emma C.
    Brown, Richard J. C.
    Brown, Andrew S.
    ACCREDITATION AND QUALITY ASSURANCE, 2025, 30 (02) : 221 - 231
  • [48] Use of single particle ICP-MS to estimate silver nanoparticle penetration through baby porcine mucosa
    Zanoni, Ilaria
    Crosera, Matteo
    Pavoni, Elena
    Adami, Gianpiero
    Mauro, Marcella
    Costa, Anna Luisa
    Lead, Jamie R.
    Filon, Francesca Larese
    NANOTOXICOLOGY, 2021, 15 (08) : 1005 - 1015
  • [49] Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS
    Arturo A. Keller
    Yuxiong Huang
    Jenny Nelson
    Journal of Nanoparticle Research, 2018, 20
  • [50] Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS) (vol 27, pg 1131, 2012)
    Mitrano, Denise M.
    Barber, Angela
    Bednar, Anthony
    Westerhoff, Paul
    Higgins, Christopher P.
    Ranville, James F.
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2013, 28 (12) : 1949 - 1949