ELLIPTIC CURVES MAXIMAL OVER EXTENSIONS OF FINITE BASE FIELDS

被引:0
作者
Anema, A. S., I [1 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, POB 407, NL-9700 AK Groningen, Netherlands
关键词
D O I
10.1090/mcom/3342
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an elliptic curve E over a finite field F-q we study the finite extensions F(q)n of F-q such that the number of F(q)n-rational points on E attains the Hasse upper bound. We obtain an upper bound on the degree n for E ordinary using an estimate for linear forms in logarithms, which allows us to compute the pairs of isogeny classes of such curves and degree n for small q. Using a consequence of Schmidt's Subspace Theorem, we improve the upper bound to n <= 11 for sufficiently large q. We also show that there are infinitely many isogeny classes of ordinary elliptic curves with n = 3.
引用
收藏
页码:453 / 465
页数:13
相关论文
共 11 条
[1]  
[Anonymous], 1975, INTRO THEORY NUMBERS
[2]  
Bugeaud Yann, 2004, CAMBRIDGE TRACTS MAT, V160
[3]  
CASSELS JWS, 1966, J LONDON MATH SOC, V41, P193
[4]  
Doetjes P., 2009, THESIS
[5]   Gaussian primes in narrow sectors [J].
Harman, G ;
Lewis, P .
MATHEMATIKA, 2001, 48 (95-96) :119-135
[6]   Elliptic curves with isomorphic groups of points over finite field extensions [J].
Heuberger, Clemens ;
Mazzoli, Michela .
JOURNAL OF NUMBER THEORY, 2017, 181 :89-98
[7]   Linear forms in two logarithms and interpolation determinants [J].
Laurent, M ;
Mignotte, M ;
Nesterenko, Y .
JOURNAL OF NUMBER THEORY, 1995, 55 (02) :285-321
[8]  
Silverman J.H., 1986, Graduate Texts in Mathematics, V106, DOI DOI 10.1007/978-1-4757-1920-8
[9]  
Soomro M. A., 2013, THESIS
[10]  
THE PART GROUP, 2017, PARI GP VERS 2 9 3