Residuality Properties of Certain Classes of Convex Functions on Normed Linear Spaces

被引:0
|
作者
Barshad, Kay [1 ]
Reich, Simeon [1 ]
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, Haifa, Israel
基金
以色列科学基金会;
关键词
Baire category; convex function; local uniform convexity; lower semi-continuity; normed space; residual set; strict convexity; uniformity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of residual sets of certain classes of convex functions on a normed linear space. Such sets play an important role in many optimization algorithms for which elements of a certain class can be used as good approximants of given convex functions and thus the abundance of such elements is crucial for the aforementioned algorithms.
引用
收藏
页码:795 / 806
页数:12
相关论文
共 50 条
  • [1] On strong orthogonality and strictly convex normed linear spaces
    Kallol Paul
    Debmalya Sain
    Kanhaiya Jha
    Journal of Inequalities and Applications, 2013
  • [2] On strong orthogonality and strictly convex normed linear spaces
    Paul, Kallol
    Sain, Debmalya
    Jha, Kanhaiya
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [3] On the second conjugate of several convex functions in general normed vector spaces
    Zalinescu, Constantin
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (1-3) : 475 - 487
  • [4] On the second conjugate of several convex functions in general normed vector spaces
    Constantin Zălinescu
    Journal of Global Optimization, 2008, 40 : 475 - 487
  • [5] Error bounds for lower semicontinuous functions in normed spaces
    Ng, KF
    Zheng, XY
    SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (01) : 1 - 17
  • [6] Some convolution properties of certain classes of analytic functions
    Noor, Khalida Inayat
    Cho, Nak Eun
    APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1155 - 1160
  • [7] Facility location in normed linear spaces
    Sorin Rădulescu
    Diana-Olimpia Alexandrescu
    Vicenţiu D. Rădulescu
    Optimization Letters, 2015, 9 : 1353 - 1369
  • [8] LIMIT SETS IN NORMED LINEAR SPACES
    Charatonik, Wlodzimierz J.
    Samulewicz, Alicja
    Witula, Roman
    COLLOQUIUM MATHEMATICUM, 2017, 147 (01) : 35 - 42
  • [9] Facility location in normed linear spaces
    Radulescu, Sorin
    Alexandrescu, Diana-Olimpia
    Radulescu, Vicentiu D.
    OPTIMIZATION LETTERS, 2015, 9 (07) : 1353 - 1369
  • [10] Bohr-Rogosinski-Type Inequalities for Certain Classes of Functions: Analytic, Univalent, and Convex
    Ahamed, Molla Basir
    Ahammed, Sabir
    RESULTS IN MATHEMATICS, 2023, 78 (05)