AMP-activated protein kinase induces a p53-dependent metabolic checkpoint

被引:1415
作者
Jones, RG
Plas, DR
Kubek, S
Buzzai, M
Mu, J
Xu, Y
Birnbaum, MJ
Thompson, CB [1 ]
机构
[1] Univ Penn, Abramson Family Canc Res Inst, Dept Canc Biol, Philadelphia, PA 19104 USA
[2] Univ Penn, Howard Hughes Med Inst, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Med, Philadelphia, PA 19104 USA
[4] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.molcel.2005.03.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Replicative cell division is an energetically demanding process that can be executed only if cells have sufficient metabolic resources to support a doubling of cell mass. Here we show that proliferating mammalian cells have a cell-cycle checkpoint that responds to glucose availability. The glucose-dependent checkpoint occurs at the G(1)/S boundary and is regulated by AMP-activated protein kinase (AMPK). This cell-cycle arrest occurs despite continued amino acid availability and active mTOR. AMPK activation induces phosphorylation of p53 on serine 15, and this phosphorylation is required to initiate AMPK-dependent cellcycle arrest. AMPK-Induced p53 activation promotes cellular survival in response to glucose deprivation, and cells that have undergone a p53-dependent metabolic arrest can rapidly reenter the cell-cycle upon glucose restoration. However, persistent activation of AMPK leads to accelerated p53-dependent cellular senescence. Thus, AMPK is a cell-intrinsic regulator of the cell-cycle that coordinates cellular proliferation with carbon source availability.
引用
收藏
页码:283 / 293
页数:11
相关论文
共 37 条
[1]   Enhanced phosphorylation of p53 by ATN in response to DNA damage [J].
Banin, S ;
Moyal, L ;
Shieh, SY ;
Taya, Y ;
Anderson, CW ;
Chessa, L ;
Smorodinsky, NI ;
Prives, C ;
Reiss, Y ;
Shiloh, Y ;
Ziv, Y .
SCIENCE, 1998, 281 (5383) :1674-1677
[2]   Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation [J].
Bardeesy, N ;
Sinha, M ;
Hezel, AF ;
Signoretti, S ;
Hathaway, NA ;
Sharpless, NE ;
Loda, M ;
Carrasco, DR ;
DePinho, RA .
NATURE, 2002, 419 (6903) :162-167
[3]   Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases [J].
Barlev, NA ;
Liu, L ;
Chehab, NH ;
Mansfield, K ;
Harris, KG ;
Halazonetis, TD ;
Berger, SL .
MOLECULAR CELL, 2001, 8 (06) :1243-1254
[4]   When cells get stressed: an integrative view of cellular senescence [J].
Ben-Porath, I ;
Weinberg, RA .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 113 (01) :8-13
[5]   Activation of the ATM kinase by ionizing radiation and phosphorylation of p53 [J].
Canman, CE ;
Lim, DS ;
Cimprich, KA ;
Taya, Y ;
Tamai, K ;
Sakaguchi, K ;
Appella, E ;
Kastan, MB ;
Siliciano, JD .
SCIENCE, 1998, 281 (5383) :1677-1679
[6]   The AMP-activated protein kinase cascade - a unifying system for energy control [J].
Carling, D .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (01) :18-24
[7]   Phosphorylation of murine p53 at Ser-18 regulates the p53 responses to DNA damage [J].
Chao, C ;
Saito, S ;
Anderson, CW ;
Appella, E ;
Xu, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :11936-11941
[8]   Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses [J].
Chao, C ;
Hergenhahn, M ;
Kaeser, MD ;
Wu, ZQ ;
Saito, S ;
Iggo, R ;
Hollstein, M ;
Appella, E ;
Xu, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (42) :41028-41033
[9]   Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome [J].
Corradetti, MN ;
Inoki, K ;
Bardeesy, N ;
DePinho, RA ;
Guan, KL .
GENES & DEVELOPMENT, 2004, 18 (13) :1533-1538
[10]   WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION [J].
ELDEIRY, WS ;
TOKINO, T ;
VELCULESCU, VE ;
LEVY, DB ;
PARSONS, R ;
TRENT, JM ;
LIN, D ;
MERCER, WE ;
KINZLER, KW ;
VOGELSTEIN, B .
CELL, 1993, 75 (04) :817-825