Isogeometric analysis of fiber reinforced composites using Kirchhoff-Love shell elements

被引:50
作者
Schulte, J. [1 ]
Dittmann, M. [1 ]
Eugster, S. R. [3 ]
Hesch, S. [2 ]
Reinicke, T. [2 ]
dell'Isola, F. [4 ]
Hesch, C. [1 ]
机构
[1] Univ Siegen, Chair Computat Mech, Siegen, Germany
[2] Univ Siegen, Chair Prod Dev, Siegen, Germany
[3] Univ Stuttgart, Inst Nonlinear Mech, Stuttgart, Germany
[4] Sapienza Univ Rome, Dept Struct & Geotech Engn, Rome, Italy
关键词
Second gradient elasticity; Woven fabrics; Isogeometric analysis; FINITE-ELEMENT; GRADIENT ELASTICITY; CONTINUUM-MECHANICS; FORMULATION; DEFORMATIONS; GEOMETRY; SOLIDS; NURBS; WEAK;
D O I
10.1016/j.cma.2020.112845
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A second gradient theory for woven fabrics is applied to Kirchhoff-Love shell elements to analyze the mechanics of fiber reinforced composite materials. In particular, we assume a continuous distribution of the fibers embedded into the shell surface, accounting for additional in-plane flexural resistances within the hyperelastic regime. For the finite element discretization we apply isogeometric methods, i.e. we make use of B-splines as basis functions omitting the usage of mixed approaches. The higher gradient formulation of the fabric is verified by a series of numerical examples, followed by suitable validation steps using experimental measurements on organic sheets. A final example using a non-flat reference geometry demonstrates the capabilities of the presented formulation. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:34
相关论文
共 58 条
[41]   Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials [J].
Kiendl, Josef ;
Hsu, Ming-Chen ;
Wu, Michael C. H. ;
Reali, Alessandro .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 291 :280-303
[42]   A unifying treatise on variational principles for gradient and micromorphic continua [J].
Kirchner, N ;
Steinmann, P .
PHILOSOPHICAL MAGAZINE, 2005, 85 (33-35) :3875-3895
[43]  
Marsden J. E., 2003, Introduction to Mechanics and Symmetry
[44]   Generalized Continuum Mechanics: What Do We Mean by That? [J].
Maugin, Gerard A. .
MECHANICS OF GENERALIZED CONTINU A: ONE HUNDRED YEARS AFTER THE COSSERATS, 2010, 21 :3-13
[45]  
Mindlin R.D., 1965, Int. J. Solids Struct, V1, P417, DOI [10.1016/0020-7683, DOI 10.1016/0020-7683, DOI 10.1016/0020-7683(65)90006-5, 10.1016/0020-7683(65)90006-5]
[46]  
Mishnaevsky L. L., 2007, Computational mesomechanics of composites: numerical analysis of the effect of microstructures of composites of strength and damage resistance, V1st
[47]   The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric [J].
Neff, Patrizio .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2006, 86 (11) :892-912
[48]   Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects [J].
Saanouni, K. ;
Hamed, M. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (14-15) :2289-2309
[49]   Multi-patch isogeometric analysis for Kirchhoff-Love shell elements [J].
Schuss, S. ;
Dittmann, M. ;
Wohlmuth, B. ;
Klinkel, S. ;
Hesch, C. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 349 :91-116
[50]   Second-gradient plane deformations of ideal fibre-reinforced materials: implications of hyper-elasticity theory [J].
Soldatos, Kostas P. .
JOURNAL OF ENGINEERING MATHEMATICS, 2010, 68 (01) :99-127