Computing the L1 geodesic diameter and center of a simple polygon in linear time

被引:7
作者
Bae, Sang Won [1 ]
Korman, Matias [2 ,3 ]
Okamoto, Yoshio [4 ]
Wang, Haitao [5 ]
机构
[1] Kyonggi Univ, Suwon, South Korea
[2] Natl Inst Informat, Tokyo, Japan
[3] JST, Kawarabayashi Large Graph Project, ERATO, Tokyo, Japan
[4] Univ Electrocommun, Tokyo, Japan
[5] Utah State Univ, Logan, UT 84322 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2015年 / 48卷 / 06期
基金
日本学术振兴会; 美国国家科学基金会; 新加坡国家研究基金会;
关键词
Simple polygon; Geodesic diameter; Geodesic center; L1; metric; LINK CENTER; ALGORITHM;
D O I
10.1016/j.comgeo.2015.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the L-1 geodesic diameter and center of a simple polygon can be computed in linear time. For the purpose, we focus on revealing basic geometric properties of the L-1 geodesic balls, that is, the metric balls with respect to the L-1 geodesic distance. More specifically, in this paper we show that any family of L-1 geodesic balls in any simple polygon has Helly number two, and the L-1 geodesic center consists of midpoints of shortest paths between diametral pairs. These properties are crucial for our linear-time algorithms, and do not hold for the Euclidean case. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:495 / 505
页数:11
相关论文
共 21 条
[1]   GEOMETRIC APPLICATIONS OF A MATRIX-SEARCHING ALGORITHM [J].
AGGARWAL, A ;
KLAWE, MM ;
MORAN, S ;
SHOR, P ;
WILBER, R .
ALGORITHMICA, 1987, 2 (02) :195-208
[2]  
Asano T., 1985, SOCS8532 MCGILL U
[3]  
Bae SW, 2014, LECT NOTES COMPUT SC, V8392, P120
[4]   The Geodesic Diameter of Polygonal Domains [J].
Bae, Sang Won ;
Korman, Matias ;
Okamoto, Yoshio .
DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (02) :306-329
[5]  
Breen M, 1996, GEOMETRIAE DEDICATA, V60, P283
[6]  
Chazelle B., 1982, 23rd Annual Symposium on Foundations of Computer Science, P339, DOI 10.1109/SFCS.1982.58
[7]  
Chen D.Z., 2014, Proc. 30th Annual Symp. Comput. Geom, P406
[8]   AN 0(N-LOG-N) ALGORITHM FOR COMPUTING THE LINK CENTER OF A SIMPLE POLYGON [J].
DJIDJEV, HN ;
LINGAS, A ;
SACK, JR .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (02) :131-152
[9]   LINEAR-TIME ALGORITHMS FOR VISIBILITY AND SHORTEST-PATH PROBLEMS INSIDE TRIANGULATED SIMPLE POLYGONS [J].
GUIBAS, L ;
HERSHBERGER, J ;
LEVEN, D ;
SHARIR, M ;
TARJAN, RE .
ALGORITHMICA, 1987, 2 (02) :209-233
[10]   Matrix searching with the shortest-path metric [J].
Hershberger, J ;
Suri, S .
SIAM JOURNAL ON COMPUTING, 1997, 26 (06) :1612-1634