Two kinds of quantum adiabatic approximation

被引:10
作者
Ye, Ming-Yong [1 ]
Zhou, Xiang-Fa [1 ]
Zhang, Yong-Sheng [1 ]
Guo, Guang-Can [1 ]
机构
[1] Univ Sci & Technol China, Dept Phys, Key Lab Quantum Informat, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.physleta.2007.03.056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple proof of quantum adiabatic theorem is provided. Quantum adiabatic approximation is divided into two kinds. For Hamiltonian H (t/T), a relation between the size of the error caused by quantum adiabatic approximation and the parameter T is given. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 24
页数:7
相关论文
共 23 条
  • [11] Perturbative approach to the adiabatic approximation
    MacKenzie, R
    Marcotte, E
    Paquette, H
    [J]. PHYSICAL REVIEW A, 2006, 73 (04): : 1 - 6
  • [12] Marzlin KP, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.128903
  • [13] Inconsistency in the application of the adiabatic theorem
    Marzlin, KP
    Sanders, BC
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (16) : 160408 - 1
  • [14] Messiah A., 1970, QUANTUM MECH
  • [15] Quantum adiabatic approximation and the geometric phase
    Mostafazadeh, A
    [J]. PHYSICAL REVIEW A, 1997, 55 (03): : 1653 - 1664
  • [16] ADIABATIC THEOREM OF QUANTUM-MECHANICS
    NENCIU, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (02): : L15 - L18
  • [17] Nielsen M.A., 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
  • [18] Consistency of the Adiabatic Theorem
    Sarandy, M. S.
    Wu, L. -A.
    Lidar, D. A.
    [J]. QUANTUM INFORMATION PROCESSING, 2004, 3 (06) : 331 - 349
  • [19] SCHIFF LI, 1998, REV MOD PHYS, V70, P1003
  • [20] Quantitative conditions do not guarantee the validity of the adiabatic approximation
    Tong, DM
    Singh, K
    Kwek, LC
    Oh, CH
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (11)