A new operational matrix based on Boubaker wavelet for solving optimal control problems of arbitrary order

被引:11
作者
Rabiei, Kobra [1 ]
Ordokhani, Yadollah [1 ]
机构
[1] Alzahra Univ, Fac Math Sci, Dept Math, Vanak St, Tehran 1993893973, Iran
关键词
Boubaker wavelet; nonlinear optimal control problems; two-dimensional optimal control problems; Caputo derivative; operational matrix; convergence analysis; FRACTIONAL OPTIMAL-CONTROL; NUMERICAL-SOLUTION; APPROXIMATION; POLYNOMIALS; EQUATION; SYSTEMS;
D O I
10.1177/0142331219898343
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents numerical solution for solving the nonlinear one and two-dimensional optimal control problems of arbitrary order. First, we have constructed Boubaker wavelet for the first time and defined a general formulation for its fractional derivative operational matrix. To solve the one-dimensional problem, we have transformed the problems into an optimization one. The similar process together with the Ritz method are applied to find a solution for two-dimensional problems as well. Then, the necessary conditions of optimality result in a system of algebraic equations with unknown coefficients and then control parameters can be simply solved. The error vector is considered to show the convergence of the used approximation in this method. Finally, some illustrative examples are given to demonstrate accuracy and efficiency of the proposed method.
引用
收藏
页码:1858 / 1870
页数:13
相关论文
共 43 条
[1]   Shifted Chebyshev schemes for solving fractional optimal control problems [J].
Abdelhakem, M. ;
Moussa, H. ;
Baleanu, D. ;
El-Kady, M. .
JOURNAL OF VIBRATION AND CONTROL, 2019, 25 (15) :2143-2150
[2]   Fractional Optimal Control of a Distributed System Using Eigenfunctions [J].
Agrawal, Om P. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2008, 3 (02)
[3]   Modified Adomian decomposition method for solving fractional optimal control problems [J].
Alizadeh, Ali ;
Effati, Sohrab .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (06) :2054-2061
[4]  
[Anonymous], 1999, FRACTIONAL DIFERENTI
[5]  
Baleanu D., 2016, FRACTIONAL CALCULUS
[6]   A numerical approach for solving a class of fractional optimal control problems via operational matrix Bernoulli polynomials [J].
Behroozifar, Mahmoud ;
Habibi, Neda .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (12) :2494-2511
[7]   A new Legendre operational technique for delay fractional optimal control problems [J].
Bhrawy, A. H. ;
Ezz-Eldien, S. S. .
CALCOLO, 2016, 53 (04) :521-543
[8]   An Efficient Numerical Scheme for Solving Multi-Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Tenreiro Machado, J. A. ;
Ezz-Eldien, S. S. .
ASIAN JOURNAL OF CONTROL, 2015, 17 (06) :2389-2402
[9]  
Boubaker K., 2007, TRENDS APPL SCI RES, V2, P540, DOI DOI 10.3923/TASR.2007.540.544
[10]   Boubaker polynomials expansion scheme (BPES) solution to Boltzmann diffusion equation in the case of strongly anisotropic neutral particles forward-backward scattering [J].
Boubaker, Karem .
ANNALS OF NUCLEAR ENERGY, 2011, 38 (08) :1715-1717