New exact solutions for the conformable space-time fractional KdV, CDG, (2+1)-dimensional CBS and (2+1)-dimensional AKNS equations

被引:30
作者
Yaslan, H. C. [1 ]
Girgin, A. [1 ]
机构
[1] Pamukkale Univ, Dept Math, TR-20070 Denizli, Turkey
来源
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE | 2019年 / 13卷 / 01期
关键词
Space-time fractional third order KdV equation; space-time fractional CDG equation; space-time fractional (2+1)-dimensional CBS equation; space-time fractional (2+1)-dimensional AKNS equation; conformable derivative; expansion method; CALOGERO-BOGOYAVLENSKII-SCHIFF; NONLINEAR EVOLUTION-EQUATIONS; TRAVELING-WAVE SOLUTIONS; SOLITON-SOLUTIONS;
D O I
10.1080/16583655.2018.1515303
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, expansion method is applied to the space-time fractional third order Korteweg-De Vries (KdV) equation, space-time fractional Caudrey-Dodd-Gibbon (CDG) equation, space-time fractional (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation and space-time fractional (2+1)-dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation. Here, the fractional derivatives are described in conformable sense. The obtained traveling wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. The graphs for some of these solutions have been presented by choosing suitable values of parameters to visualize the mechanism of the given nonlinear fractional evolution equations.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 34 条
[1]  
Abdollahzadeh M., 2010, INT J AP MAT COM-POL, V2, P81
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
Adio A., 2017, IRJABS, V36, P164
[4]   SOLITONS AND DISCRETE EIGENFUNCTIONS OF THE RECURSION OPERATOR OF NONLINEAR EVOLUTION-EQUATIONS .1. THE CAUDREY-DODD-GIBBON-SAWADA-KOTERA EQUATION [J].
AIYER, RN ;
FUCHSSTEINER, B ;
OEVEL, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18) :3755-3770
[5]   Exact solutions of the generalized (2+1)-dimensional nonlinear evolution equations via the modified simple equation method [J].
Al-Amr, Mohammed O. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (05) :390-397
[6]  
Alvaro H S., 2011, Int. J. Phys. Sci, V6, P7729
[7]  
[Anonymous], 1975, Plasma Instabilities and Nonlinear Effects
[8]   Solitary and periodic wave solutions of Calogero-Bogoyavlenskii-Schiff equation via exp-function methods [J].
Ayub, Kamran ;
Khan, M. Yaqub ;
Mahmood-Ul-Hassan, Qazi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) :3231-3241
[9]   New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev-Petviashvili hierarchy equations [J].
Baskonus, H. M. ;
Sulaiman, T. A. ;
Bulut, H. .
INDIAN JOURNAL OF PHYSICS, 2017, 91 (10) :1237-1243
[10]   The Calogero-Bogoyavlenskii-Schiff equation in 2+1 dimensions [J].
Bruzón, MS ;
Gandarias, ML ;
Muriel, C ;
Ramírez, J ;
Saez, S ;
Romero, FR .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (01) :1367-1377