Reparametrizations and approximate values of integrals of the calculus of variations

被引:12
作者
Cellina, A [1 ]
Ferriero, A [1 ]
Marchini, EM [1 ]
机构
[1] Univ Milan, Dipartimento Matemat & Applicaz, I-20126 Milan, Italy
关键词
reparametrization; Lavrentiev phenomenon;
D O I
10.1016/S0022-0396(02)00176-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an approximation result, that implies the non-occurrence of the Lavrentiev phenomenon. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:374 / 384
页数:11
相关论文
共 11 条
[1]  
ALBERTI G, 1994, CALCULUS VARIATIONS
[2]   LIPSCHITZ REGULARITY FOR MINIMIZERS OF INTEGRAL FUNCTIONALS WITH HIGHLY DISCONTINUOUS INTEGRANDS [J].
AMBROSIO, L ;
ASCENZI, O ;
BUTTAZZO, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 142 (02) :301-316
[3]  
[Anonymous], 1996, CONVEX ANAL MINIMIZA
[4]  
Cesari L., 1983, OPTIMIZATION THEORY
[5]   REGULARITY PROPERTIES OF SOLUTIONS TO THE BASIC PROBLEM IN THE CALCULUS OF VARIATIONS [J].
CLARKE, FH ;
VINTER, RB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (01) :73-98
[6]  
DECOROGNA B, 1989, DIRECT METHODS CALCU
[7]   MINIMIZING PROPERTY OF KEPLERIAN ORBITS [J].
GORDON, WB .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (05) :961-971
[8]  
Lavrentiev M., 1926, ANN MAT PUR APPL, V4, P7
[9]  
Mania B., 1934, B UNIONE MAT ITAL, V13, P147
[10]  
Rockafellar R., 1972, CONVEX ANAL