Fast computation of digital terrain model anomalies based on LiDAR data for geoglyph detection in the Amazon

被引:0
作者
Wagner, Fabien H. [1 ,2 ]
Peripato, Vinicius [3 ]
Kipnis, Renato [4 ]
Werdesheim, Sara L. [5 ]
Dalagnol, Ricardo [1 ,2 ,6 ]
Aragao, Luiz E. O. C. [3 ]
Hirye, Mayumi C. M. [7 ]
机构
[1] Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA 90095 USA
[2] CALTECH, NASA, Jet Prop Lab, Pasadena, CA USA
[3] Natl Inst Space Res INPE, Remote Sensing Div, Sao Jose Dos Campos, Brazil
[4] Sci Consultoria Cient, Archaeol Dept, Sao Paulo, Brazil
[5] Worley, Serv Sci Environm Planning & Management, Sao Paulo, Brazil
[6] Univ Manchester, Dept Geog, Sch Environm Educ & Dev, Manchester, Lancs, England
[7] Univ Sao Paulo, Quapa Lab, Fac Architecture & Urbanism, Sao Paulo, Brazil
基金
美国国家航空航天局;
关键词
LiDAR; elevation model; geoglyphs detections; archeology; SKY-VIEW FACTOR; VISUALIZATION; LANDSCAPE; FEATURES;
D O I
10.1080/2150704X.2022.2109942
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The detection of pre-Colombian geoglyphs, geometric structures outlined by trenches or walls, from airborne LiDAR data is usually made by visual observation of the variation in elevation and commonly using additional hillshading. Depending on the area covered by LiDAR to inspect and the variation in elevation, this method can be time consuming and inaccurate as it required to constantly adjust the contrasts of the elevation image or the parameter of the hillshading function, and the user can miss some important archaeological features. Here, we present a method to enhance the anomaly of the terrain without using focal operations to normalize the elevation of each pixel in relation to its neighbours. An example is given for two areas covered by LiDAR and containing geoglyphs under the forest cover in the Amazon and with a synthetic LiDAR footprint over a simulated dense forested area containing four geoglyphs with different shapes and height/depth characteristics. The normalization enables to remove the influence of the landscape mean elevation, to highlight the fine anomaly of the terrain. The produced equalized images enable a fast visual assessment of relief anomaly and of the presence of geoglyphs in large LiDAR datasets of hundreds or thousands of LAS files.
引用
收藏
页码:935 / 945
页数:11
相关论文
共 25 条
[1]   A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data [J].
Bennett, Rebecca ;
Welham, Kate ;
Hill, Ross A. ;
Ford, Andrew .
ARCHAEOLOGICAL PROSPECTION, 2012, 19 (01) :41-48
[2]   Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala [J].
Canuto, Marcello A. ;
Estrada-Belli, Francisco ;
Garrison, Thomas G. ;
Houston, Stephen D. ;
Acuna, Mary Jane ;
Kovac, Milan ;
Marken, Damien ;
Nondedeo, Philippe ;
Auld-Thomas, Luke ;
Castanet, Cyril ;
Chatelain, David ;
Chiriboga, Carlos R. ;
Drapela, Tomas ;
Lieskovsky, Tibor ;
Tokovinine, Alexandre ;
Velasquez, Antolin ;
Fernandez-Diaz, Juan C. ;
Shrestha, Ramesh .
SCIENCE, 2018, 361 (6409) :1355-+
[3]   A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data [J].
Challis, Keith ;
Forlin, Paolo ;
Kincey, Mark .
ARCHAEOLOGICAL PROSPECTION, 2011, 18 (04) :279-289
[4]   Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology [J].
Chase, Arlen F. ;
Chase, Diane Z. ;
Fisher, Christopher T. ;
Leisz, Stephen J. ;
Weishampel, John F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (32) :12916-12921
[5]   Climate change and cultural resilience in late pre-Columbian Amazonia [J].
de Souza, Jonas Gregorio ;
Robinson, Mark ;
Maezumi, S. Yoshi ;
Capriles, Jose ;
Hoggarth, Julie A. ;
Lombardo, Umberto ;
Novello, Valdir Felipe ;
Apaestegui, James ;
Whitney, Bronwen ;
Urrego, Dunia ;
Alves, Daiana Travassos ;
Rostain, Stephen ;
Power, Mitchell J. ;
Mayle, Francis E. ;
da Cruz Jr, Francisco William ;
Hooghiemstra, Henry ;
Iriarte, Jose .
NATURE ECOLOGY & EVOLUTION, 2019, 3 (07) :1007-1017
[6]  
Doneus M., 2006, BAR INT SERIES, V1568, P99
[7]  
EBA, 2016, IMPR BIOM EST METH A
[8]  
Embrapa, 2016, SUST LANDSC PROGR
[9]   Uncovering archaeological landscapes at Angkor using lidar [J].
Evans, Damian H. ;
Fletcher, Roland J. ;
Pottier, Christophe ;
Chevance, Jean-Baptiste ;
Soutif, Dominique ;
Tan, Boun Suy ;
Im, Sokrithy ;
Ea, Darith ;
Tin, Tina ;
Kim, Samnang ;
Cromarty, Christopher ;
De Greef, Stephane ;
Hanus, Kasper ;
Baty, Pierre ;
Kuszinger, Robert ;
Shimoda, Ichita ;
Boornazian, Glenn .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (31) :12595-12600
[10]   The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions [J].
Fatoyinbo, Temilola ;
Armston, John ;
Simard, Marc ;
Saatchi, Sassan ;
Denbina, Michael ;
Lavalle, Marco ;
Hofton, Michelle ;
Tang, Hao ;
Marselis, Suzanne ;
Pinto, Naiara ;
Hancock, Steven ;
Hawkins, Brian ;
Duncanson, Laura ;
Blair, Bryan ;
Hansen, Christy ;
Lou, Yunling ;
Dubayah, Ralph ;
Hensley, Scott ;
Silva, Carlos ;
Poulsen, John R. ;
Labriere, Nicolas ;
Barbier, Nicolas ;
Jeffery, Kathryn ;
Kenfack, David ;
Herve, Memiaghe ;
Bissiengou, Pulcherie ;
Alonso, Alfonso ;
Moussavou, Ghislain ;
White, Lee T. J. ;
Lewis, Simon ;
Hibbard, Kathleen .
REMOTE SENSING OF ENVIRONMENT, 2021, 264